Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Research Could Stop Tumour Cells from Spreading

Published: Thursday, March 29, 2012
Last Updated: Thursday, March 29, 2012
Bookmark and Share
Researchers from the Department of Chemistry and Molecular Biology at the University of Gothenburg have managed for the first time to obtain detailed information about the role of the protein metastasin in the spread of tumour cells.

Published recently in the renowned Proceedings of the National Academy of Sciences (PNAS), the study paves the way for the development of new drugs.

Metastasin is a protein with a key role in the spread of tumour cells.Previous research has shown that it is activated through the binding of calcium ions and then binds to and modulates other proteins.

Increases the spread of tumour cells

One of metastasin’s binding partners is a motor protein called non-muscle myosin. Motor proteins are the driving force behind cell mobility. By binding to this protein, metastasin can increase the spread of tumour cells, acting as a kind of gas pedal for the cancer engine.

- Using a method called X-ray crystallography, we have managed for the first time to obtain detailed information on how metastasin binds to a motor protein, a process that facilitates the spread of tumour cells, explains researcher Gergely Katona.

Detailed picture

It has been possible to image metastasin and calcium-ion-bound metastasin using X-ray crystallography before, but the researchers at the University of Gothenburg are the first to have imaged the structure of calcium-ion-activated metastasin with an attached non-muscle myosin fragment.

- This has given us information about regions of both metastasin and the motor protein that are crucial for metastasin’s ability to bind to the motor protein. This is important to know for drugs to be developed that block these specific regions and so prevent this binding.

The image of the two molecules gives us a better understanding of how metastasin binds to the motor protein, so increasing cell mobility and the spread of tumour cells. This understanding in turn paves the way for the development of new drugs to prevent this harmful interaction between molecules and so stop tumour cells from spreading.

- The metastasin and the motor protein can be imaged as a snapshot, but the next stage is to create a kind of video to see how the molecules move when binding to one another, explains Katona.

Gergely Katona is a researcher at the Department of Chemistry and Molecular Biology at the University of Gothenburg.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
Tuesday, October 13, 2015
Scientific News
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.
How to Control Shape, Structure of DNA and RNA
Researchers have used computational modelling to shed light on precisely how charged gold nanoparticles influence the structure of DNA and RNA.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos