Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Plant Research Reveals New Role for Gene Silencing Protein

Published: Friday, March 30, 2012
Last Updated: Friday, March 30, 2012
Bookmark and Share
A DICER protein, known to produce tiny RNAs in cells, also helps complete an important step in gene expression, according to research on Arabidopsis thaliana.

The expression of a gene, when an organism's DNA is transcribed into a useable product, requires activation via a promoter or an external trigger. Plant research to be published in Science helps to show that later stages of transcription are just as important. This is likely to apply to other organisms, including humans.

Termination is the final stage of transcription. Successful termination is dependent on DNA being transcribed into RNA with the correct sections, including a certain length tail.

Scientists at the John Innes Centre on Norwich Research Park have found that where effective termination through the normal mechanisms has not occurred, DICER-LIKE 4 (DCL4) steps in to tidy up. Without termination, transcription continues down the chromosome unchecked.

In this way, DCL4 plays a crucial and previously unknown role in transcription termination. It helps formation of the gene product. DCL4 is more commonly known to play a part in the opposite effect, gene silencing.

"DCL4 is a back-up to termination processes, helping a gene to be successfully expressed," said lead author Professor Caroline Dean from JIC, which is strategically funded by BBSRC.

The findings may help explain why gene silencing happens so often with transgenes. It was not known that so much attention should be given to the tail end of a gene.

"Our research shows that for successful expression the end of a gene is just as important as its beginning," said Dean.

When termination fails a lot of aberrant RNA is made -- this is degraded as part of a cell's quality control mechanism. This can have consequences for other sequences in the genome that match the aberrant RNA.

"If a gene ends badly, aberrant RNA will trigger silencing pathways," said Dean.

DCL4's ability to step in to rescue poor termination makes it important for both successful gene expression, a previously unknown role for it, and gene silencing.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!