Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Ancient Enzymes Function like Nanopistons to Unwind RNA

Published: Wednesday, September 05, 2012
Last Updated: Wednesday, September 05, 2012
Bookmark and Share
Molecular biologists have solved one of the mysteries of how double-stranded RNA is remodeled inside cells in both their normal and disease states.

The discovery may have implications for treating cancer and viruses in humans.

The research, which was published this week in Nature, found that DEAD-box proteins, which are ancient enzymes found in all forms of life, function as recycling “nanopistons.”

They use chemical energy to clamp down and pry open RNA strands, thereby enabling the formation of new structures. This remodeling of RNA is essential to the basic functioning of cells.

“If you want to couple fuel energy to mechanical work to drive strand separation, this is a very versatile mechanism,” said co-author Alan Lambowitz, the Nancy Lee and Perry R. Bass Regents Chair in Molecular Biology in the College of Natural Sciences and director of the Institute for Cellular and Molecular Biology.

In all cellular organisms RNA (ribonucleic acid) plays a fundamental role in the translation of genetic information into the synthesis of proteins. DEAD-box proteins are the largest family of what are known as RNA helicases, which unwind RNA.

“It has been known for some time that these enzymes do not function like traditional helicases,” said Eckhard Jankowsky, professor of biochemistry at Case Western Reserve University Medical School.

“The research by Lambowitz and his colleagues now provides the critical information that explains how the unwinding reaction works. It marks a major step toward understanding the molecular mechanics for many steps in RNA biology.”

Lambowitz said that the basic insight came when Anna Mallam, a postdoctoral researcher in his lab, hypothesized that DEAD-box proteins function modularly. One area on the protein binds to an ATP molecule, which is the energy source. Another area binds to the double-stranded RNA.

“Once the second domain is latched on to the RNA,” said Mallam, “and the first has got its ATP, the ‘piston’ comes down. It has a sharp edge that drives between the two strands and also grabs on one strand and bends it out of the way.”

Lambowitz, Mallam and their colleagues uncovered this mechanism in Mss116p, a DEAD-box protein in yeast. The mechanism is almost certainly universal to the entire family of the proteins, however, and therefore to all domains of life.


“Every DEAD-box protein that we know about has the same structure,” said Lambowitz, “and they all presumably use the same mechanism.”


This flexibility of DEAD-box proteins is essential to the functioning of healthy cells, which rely on a range of RNA molecules for basic processes, including protein synthesis.


This flexibility is also hijacked in cancers — where over-expression of DEAD-box proteins may help drive uncontrolled cell proliferation — and in infections caused by bacteria, fungi and viruses, which rely on specific DEAD-box proteins for their propagation.


“These findings could have far-reaching implications for our ability to control the activities of proteins in this class when their functions go awry in disease states,” said Michael Bender, program director in the Division of Genetics and Developmental Biology at the National Institutes of Health, which partially funded the work.

Lambowitz even sees potential, much further down the line, for using the nanopistons as the basis of biomedical technology.


“You can even envision, in the far future, how they might be incorporated into artificial nanomachines,” he said, “for switches and other mechanical devices inside and outside the cell.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,900+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Monday, June 27, 2016
New Breast Cancer Staging System
Neo-Bioscore adds HER2 status into previously developed system.
Monday, March 21, 2016
Gene-Editing Halts DMD Progression
Using a new gene-editing technique, a team of scientists from UT Southwestern Medical Center stopped progression of Duchenne muscular dystrophy (DMD) in young mice.
Tuesday, January 05, 2016
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Thursday, July 23, 2015
Can Cell Cycle Protein Prevent or Kill Breast Cancer Tumors?
An MD Anderson study has shown the potential of a simple molecule involved in cancer metabolism as a powerful therapeutic.
Monday, July 20, 2015
Cancer-Causing Virus Blocks Human Immune Response
Epstein-Barr virus shown to outwit the human immune response using microRNAs.
Wednesday, January 28, 2015
Metabolic Protein Launches Sugar Feast that Nurtures Brain Tumors
PKM2 slips into nucleus to promote cancer; potential biomarker and drug approach discovered.
Wednesday, November 28, 2012
Good Cholesterol' Nanoparticles Seek and Destroy Cancer Cells
Nanoparticles loaded with small interfering RNA to silence cancer-promoting genes selectively shrunk or destroyed ovarian cancer tumors in mice.
Thursday, May 05, 2011
'Good Cholesterol' Nanoparticles Seek and Destroy Cancer Cells
Scientists package HDL with gene-silencing siRNA to target tumors, spare normal tissue.
Wednesday, April 13, 2011
New Genomic Technique Uncovers Coral Transcriptome
Researchers have uncovered the larval transcriptome of a reef-building coral by utilizing a new technique for cDNA preparation.
Tuesday, May 12, 2009
Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Exploiting Malaria’s Achilles’ Heel
Researchers have uncovered an Achilles' heel in malaria's anti-drug treatment arsenal that could lead to a disease cure.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,900+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!