Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

NanoString Launches Single Cell Gene Expression Solution for its nCounter® Analysis System

Published: Wednesday, September 26, 2012
Last Updated: Wednesday, September 26, 2012
Bookmark and Share
New protocol enables scientists to investigate more genes than microfluidic qPCR protocols with high sensitivity.

NanoString Technologies, Inc. announced the launch of a Single Cell Gene Expression application that provides researchers with a flexible and highly sensitive approach to discovering differences in cell-to-cell gene expression profiles. The new Single Cell Gene Expression application allows a digital measurement of the expression of up to 800 unique transcripts, and offers superior performance to standard single cell microfluidic qPCR protocols. The single tube, highly multiplexed assay eliminates sample splitting and frees researchers from the constraints of fixed-format consumables employed by existing technologies, allowing them to assay genes based on the biology.

In side-by-side gene expression experiments using identical total RNA samples, reflecting RNA yields from 1 to 100 cells, the nCounter protocol demonstrated superior sensitivity compared to microfluidic qPCR. Specifically, the nCounter Single Cell Assay was able to quantify the expression of 70 percent more transcripts than the Fluidigm BioMark™ HD System run by a commercial service provider using an optimized single cell protocol (Citri et. al. , Nature Protocols (2012) Vol. 7(1):118-127). Results of this study will be presented today at the 2012 Select Sciences Single Cell Analysis Summit in San Diego.

“Our Single Cell Assay allows cancer, stem cell and immunology researchers to profile gene expression with unmatched sensitivity and flexibility,” said Barney Saunders, Ph.D., Senior Vice President and General Manager, Life Sciences at NanoString Technologies. “Researchers who currently enjoy the digital precision, ease-of-use and ability to run challenging sample types such as FFPE tissue, can now utilize the nCounter system for more experiments using as little as 10pg of total RNA or even single cells.”

Brad Gray, President and CEO of NanoString commented: “Single cell gene expression is an area of rapidly growing interest from researchers who are already using nCounter technology as well as those who are getting to know our technology for the first time,” said Brad Gray, President & CEO of NanoString Technologies.  “We are committed to constantly expanding the nCounter Analysis System application suite, and this new offering is just one of many new capabilities being developed by our R&D team.”

The nCounter Analysis System is a fully automated, multi-application digital detection and counting system with a very simple workflow. The nCounter system has been employed in basic and translational research since it was first introduced in 2008. NanoString provides assays for gene expression, miRNA analysis and copy number variation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

NanoString, Brigham and Women’s Hospital Collaborate
Research collaboration to accelerate translation of genomic discoveries into clinical diagnostics in oncology.
Wednesday, October 08, 2014
NanoString Technologies and BD Biosciences Sign Collaboration Agreement
New workflow to provide scientists with tools that enable single cell analysis for oncology, immunology and stem cell research.
Monday, September 09, 2013
Scientific News
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!