Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Comprehensive View of Breast Cancer Reveals New Insights

Published: Friday, September 28, 2012
Last Updated: Friday, September 28, 2012
Bookmark and Share
New research suggests that Basal-like breast cancer is genetically distinct from other breast cancer subtypes.

At first glance, the two tumor subtypes seem to have little in common: one takes root in the ovaries and the other, in breast tissue.

Conventionally, tumors like these are referred to by their organ of origin and other basic characteristics such as the cell type that spawned them.

But through projects like The Cancer Genome Atlas (TCGA), researchers from the Broad Institute and elsewhere are taking a deeper look at cancer’s many forms and finding genomic similarities that cut across these classifications, as well as great diversity within single classes of cancer.

In a paper published online Sunday in Nature, the TCGA network describes discoveries gleaned from characterizing samples from 825 breast cancer patients.

Breast cancer is a diverse disease with four primary subtypes. The new research suggests that one of these subtypes - Basal-like breast cancer -is genetically distinct from other breast cancer subtypes, but shares many molecular characteristics with high-grade serous ovarian cancer, a form of cancer that is also notoriously difficult to treat.

“The underlying genomic alterations in Basal-breast cancer were different than they were in the other breast cancer subtypes,” said Andrew Cherniack, a research scientist in the Broad’s Cancer Program and an author of the paper. “Molecularly, it’s a different disease.”

The Broad Genomic Characterization Center, led by Matthew Meyerson and Stacey Gabriel, provides all genomic copy number data for the entire TCGA.

In cancer, large pieces of DNA can get amplified (copied and pasted multiple times) or deleted, resulting in distorted genomic function.

Copy number analysis allows researchers to detect these large additions and subtractions. This analysis, along with other lines of evidence, helped the team see how distinct Basal-breast cancer was from other forms of the disease and to discover its similarity to high-grade serous ovarian cancer, which was characterized in depth by the TCGA last year.

In addition to processing and analyzing samples sent to the Broad, researchers at the Broad oversee the system known as Firehose, which is used to analyze all of the TCGA data generated not only at the Broad but also at the other TCGA centers.

Gad Getz, the director of Cancer Genome Computational Analysis at the Broad, and his team developed Firehose, which incorporates tools developed by several groups including those from the Broad, such as the software package GenePattern.

“With a dozen centers involved in the TCGA project, tools like Firehose can help us coordinate and consolidate data analysis,” said Gordon Saksena, a senior software engineer in Getz’s group and an author of the paper.

Saksena continued, “It’s great to have this much data for testing, refining, and improving our models. And, with so many samples, we can identify more genes that appear to be under positive selection within the tumor, and thus worthy of further study.”

In addition to breast cancer and ovarian cancer, the TCGA has also published analyses on glioblastoma multiforme, colorectal adenocarcinoma, and lung squamous cell carcinoma.

“As we work on more TCGA projects, we can begin to make associations among subgroups of different types of cancer,” said Getz. “These are the kinds of connections that we would never have been able to make without this level of genetic detail or this quantity of samples.”

Mike Noble, a software engineering manager in Getz’s group and an author of the breast cancer paper, describes the work of the TCGA as creating maps, and likens the first major papers from the TCGA on each of form of cancer as markers along a trail.

"These marker papers we've published on brain, breast, and lung cancer are like the first sign posts erected along trails that will be blazed with these maps," said Noble.

Noble continued, "And it's really just the beginning: once you establish your map, you start building your roads, you build your signposts, and then everyone wants to start traveling."

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos