Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

In Cancer, an Embryonic Mechanism Gone Awry

Published: Monday, October 08, 2012
Last Updated: Monday, October 08, 2012
Bookmark and Share
Many types of cancer could originate from a mechanism that cells use to silence genes.

This process, which is essential in embryonic development, might be accidentally reactivated in tumor cells, according to EPFL scientists.

There are some genes that are only activated in the very first days of an embryo’s existence. Once they have accomplished their task, they are shut down forever, unlike most of our genes, which remain active throughout our lives. EPFL scientists have unveiled part of this strange mechanism. The same process, accidentally initiated later in life, could be responsible for many kinds of cancer. The discovery is described in a recent article in the journal Cell Reports.

The researchers identified a group of proteins that play a key role in this phenomenon. They bind to a DNA sequence near the gene, and substitute one DNA element for another, essentially “marking” the sequence. This phenomenon is known as “methylation.” Once the marker is in place, the cellular machinery recognizes the sign and maintains the gene in a dormant state.

“It’s an extremely elegant mechanism. The genes are needed right at the beginning of embryonic development, but rather than deactivate them every time a cell divides, the job is done in one fell swoop, once the genes are no longer required,” explains EPFL professor Didier Trono, who co-authored the article. “This process is also involved in the control of viral sequences, which make up almost half of our genome, and must be inactivated very early in development.”

This gene-silencing mechanism, which normally takes place in a several-day-old embryo, can also occur accidentally later in life. In many cancer cells, certain genes have been marked by methylation; they have been silenced. If, for example, the gene responsible for controlling cell division has been methylated, the consequences are all too easy to imagine. “The embryonic process, which is designed to silence certain genes, can be fortuitously reactivated, leading to the formation of tumor cells.”

It is still not understood why the process stops after the first days of embryogenesis, even though many of the active proteins continue to be expressed in the cell, says Trono. “If we can figure out how this cellular clock works, then we would perhaps be able to understand how the mechanism is reactivated later, leading to the development of cancer.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!