Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Antibody Found in Lupus May Protect Against Certain Cancers

Published: Friday, October 26, 2012
Last Updated: Friday, October 26, 2012
Bookmark and Share
Yale Cancer Center researchers report that an antibody associated with the autoimmune disease systemic lupus erythematosus may actually offer a treatment for certain cancers.

In autoimmune diseases such as lupus, the immune system attacks and damages the body’s own cells and tissue, rather than destroying foreign invaders.

Antibodies targeting the host's DNA are found in lupus, and many of these antibodies are toxic. Some of these lupus antibodies penetrate living cells and nuclei.

One unusual cell-penetrating lupus autoantibody that is not harmful to normal cells or tissues was previously isolated from a mouse model of lupus by Richard H. Weisbart, M.D. of UCLA.

The antibody, known as 3E10, is not only benign but has the capacity to penetrate both healthy and malignant cells and cell nuclei.

Knowing that capacity, Yale researchers were investigating whether 3E10 could be used as a drug-delivery vehicle.

But they discovered to their surprise that the antibody already had the ability to sensitize cancer cells to radiation and chemotherapy and interfere with their ability to sustain themselves through DNA repair.

With the discovery of this cancer cell susceptibility, the researchers further found that 3E10, when used alone, could selectively kill cancer cells with DNA repair deficiencies such as those with mutations in the BRCA2 gene.

BRCA2 is a tumor suppressor that, when damaged or deficient, can lead to malignancies such as breast, ovarian, pancreatic, and prostate cancers.

“Finding this characteristic of 3E10 opens up a new avenue for researching treatment of BRCA2-related cancers,” said lead author Peter M. Glazer, M.D., professor and chairman of therapeutic radiology, professor of genetics, and a member of Yale Cancer Center. “It may also lead us to new therapies for other types of cancers such as brain gliomas.”

This discovery may also lead to important new insights into lupus itself.

"The most immediate relevance of our findings to human disease is the new recognition that lupus antibodies might be able to be harnessed as new therapies for cancer," said author James E. Hansen, M.D. assistant professor of therapeutic radiology and a member of Yale Cancer Center.

Hansen continued, "It also opens up new windows for exploration into the biology of lupus antibodies and may explain the unexpectedly low rates of breast, ovarian, and prostate cancer in lupus patients. It also may help explain why lupus patients appear to be very sensitive to DNA-damaging agents."


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Single-Cell, 42-plexed Protein Analysis Achieved with a New Microchip Technology
A novel microdevice capable of detecting 42 unique immune effector proteins has been developed.
Tuesday, February 17, 2015
Yale Team Identifies Key Process In Brain Development
miR-107 shown to play essential role in regulating normal brain development.
Friday, February 06, 2015
Healthy Brain Development Balanced on Edge of a Cellular ‘Sword’
The study helps explain the molecular basis of complex brain abnormalities.
Wednesday, December 24, 2014
New Class of Synthetic Molecules Mimics Antibodies
A Yale University lab has crafted the first synthetic molecules that have both the targeting and response functions of antibodies.
Wednesday, December 24, 2014
Reversing The Effects Of Pulmonary Fibrosis
Study shows potential for reversing the effects of pulmonary fibrosis with a microRNA mimic.
Wednesday, September 24, 2014
Immune Cells get Cancer-Fighting Boost From Nanomaterials
Yale researchers used bundled carbon nanotubes to incubate cytotoxic T cells.
Monday, August 18, 2014
Awakening Genes that Suppress Tumors
When genes that normally suppress tumor growth are themselves suppressed, cancer cells can grow and proliferate uncontrollably.
Tuesday, October 15, 2013
New Study Changes View about the Genetics of Leukemia Risk
A gene that helps keep blood free of cancer is controlled by tiny pieces of RNA, a finding that may lead to better ways to diagnose blood cancers.
Tuesday, October 15, 2013
Analysis of Little-Explored Regions of Genome Reveals Dozens of Cancer Triggers
A massive data analysis of natural genetic variants in humans and variants in cancer tumors has implicated dozens of mutations in the development of breast and prostate cancer.
Friday, October 04, 2013
Detecting Breast Cancer: 3-D Screening Reduces Recall Rates
Tomosynthesis, or 3-D mammography, significantly reduced the number of patients being recalled for additional testing after receiving a mammogram.
Tuesday, July 30, 2013
Surprising Mechanism Discovered in Polycystic Kidney Disease
A study has uncovered a new and unexpected molecular mechanism in the development of polycystic kidney disease, or PKD.
Monday, July 29, 2013
Metastatic Tumor a Hybrid of Cancer Cell and White Blood Cell
Scientists have found evidence that a human metastatic tumor can arise when a leukocyte and a cancer cell fuse to form a genetic hybrid.
Monday, July 08, 2013
Brain-Penetrating Particle Attacks Deadly Tumors
Researchers have shown that a new approach extends the lives of laboratory animals and are preparing to seek government approval for a human clinical trial.
Wednesday, July 03, 2013
Promising Drug Prevents Cancer Cells from Shutting Down Immune System
An investigational drug that targets the immune system’s ability to fight cancer is showing promising results in Yale Cancer Center (YCC) patients.
Monday, June 10, 2013
Combined Immunotherapy Shows Promising Results Against Advanced Melanoma
Combining two cancer immunotherapy drugs in patients with advanced melanoma produced rates of tumor regression that appeared greater than in prior trials with either drug alone.
Monday, June 10, 2013
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!