Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Domainex Researchers Identify Small-Molecule Inhibitors of TBK1/IKKepsilon Affecting IL-17 Signaling

Published: Monday, November 05, 2012
Last Updated: Monday, November 05, 2012
Bookmark and Share
Inhibitors may have utility in autoimmune disease treatment.

Domainex Ltd. has developed a number of chemical series with potent and selective activity against two closely-related kinases TBK1 and IKKepsilon.

IL-17 mediated signaling is known to induce the expression of cytokines and other effectors that can cause a variety of immunological diseases such as psoriasis and Chronic Obstructive Pulmonary Disease (COPD).

Domainex researchers are now the first to report that small-molecule inhibitors of TBK1/IKKepsilon are able to affect IL-17 signaling.

These results suggest that the Domainex inhibitors may have utility in a wide range of clinically-important diseases that have great unmet medical needs.

Recent clinical studies reported in The New England Journal of Medicine by Lilly and Amgen have shown that neutralizing anti-IL-17 monoclonal antibodies can have a major impact on psoriasis (Leonardi et al. 2012 and Papp et al. 2012 respectively).

The demonstration by Domainex that small-molecule drugs targeting IKKepsilon can inhibit IL-17 signaling indicates that these compounds have great clinical potential in this disease and other important settings.

Domainex has developed three series of drug-like compounds, each series having inhibitors with high potency and selectivity against other kinases.

The lead compounds have good metabolic properties and the Company is now driving these compounds forwards towards a clinical candidate.

Domainex's Research Director, Trevor Perrior, said: "Domainex, in collaboration with The Institute of Cancer Research, has previously shown that its inhibitors of TBK1/IKKepsilon have activity against a variety of cancer cell-lines. Domainex has also demonstrated that its inhibitors are very potent blockers of interferon-beta production in immune cells, showing the compounds may have utility in diseases such as lupus. The latest finding that our TBK1/IKKepsilon inhibitors can also inhibit IL-17 signaling suggests that the compounds are also of potential use for treatment of other major diseases such as psoriasis and COPD. Domainex has recently obtained funding from the government-backed Biomedical Catalyst programme to explore the use of its inhibitors of IKKepsilon in COPD."

Eddy Littler, CEO of Domainex, said: "The latest results showing the activity of Domainex's TBK1/IKKepsilon inhibitors against IL-17 signaling reinforces the fact that this project is of very high interest to pharma. Indeed Domainex is already in discussion with a number of potential partners with a view to them helping us to progress the programme to the clinic, and fully exploit its enormous potential. We are also grateful for the Biomedical Catalyst award that will enable us to extend our work to COPD, and help us fully exploit our intellectual property on inhibitors of TBK1 and IKKepsilon".


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

ZoBio, Domainex Partner to support FORMA Therapeutics’ Drug Discovery Programs
ZoBio and Domainex Ltd. announce a collaboration with FORMA Therapeutics to provide NMR-based structural biology services for a substantial panel of FORMA drug targets.
Monday, December 08, 2014
Domainex Awarded Technology Strategy Board Funding
£250,000 grant to support the development of a new drug for the treatment of cancers.
Friday, November 04, 2011
Scientific News
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!