Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Portable Device Enables RNA Detection from Ultra-Small Sample

Published: Friday, November 09, 2012
Last Updated: Friday, November 09, 2012
Bookmark and Share
A new power-free microfluidic chip developed by researchers at the RIKEN Advanced Science Institute (ASI) enables detection of microRNA from extremely small sample volume in only 20 minutes.

By drastically reducing the time and quantity of sample required for detection, the chip lays the groundwork for early-stage point-of-care diagnosis of diseases such as cancer and Alzheimer's.

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in a wide range of biological processes including development, cell proliferation, differentiation and cell death (apoptosis). Concentration of certain miRNA in body fluids increases with the progression of diseases such as cancer and Alzheimer's, generating hope that these short RNA may hold the key to faster, more accurate diagnosis. Currently available techniques for sensitive miRNA detection, however, require days to reach a diagnosis and involve equipment operated only by trained personnel, making them impractical for use in many situations.

The research team set out to overcome these obstacles by developing a device that enables fast, easy-to-use point-of-care (POC) diagnosis from only a very small sample. In earlier research, the team developed a device in the form of a microchip which uses polydimethylsiloxane (PDMS), a silicone compound known for its air absorption properties, to pull reagents into a capture probe for analysis. This pumping technique simplified design by eliminating the need for external power sources, but the device required a quantity of sample too large for practical applications.

The new device also uses PDMS as an air pump, but drastically improves the method's sensitivity through a signal amplification method called laminar flow-assisted dendritic amplification (LFDA). First, DNA fragments which bond to specific miRNA sequences are fixed to a glass surface along with the miRNA sample to be analyzed, and then sandwiched under a layer of PDMS with channels in it (Figure 1). Emptied of air in a vacuum, the PDMS layer induces a pump effect which pulls amplification reagents, inserted at the channel inlets, into the channels and into contact with the miRNA, creating fluorescence-labeled dendritic structures that grow over time and can be quickly detected.

The sensitivity of this technique drastically reduces the sample quantity required for diagnosis to only 0.25 attomoles (10-18 mole), a thousand-fold improvement over the team's earlier model. Together with its detection time of only 20 minutes, these properties make the self-powered device ideal for use in resource-poor environments, promising portable point-of-care diagnosis for millions in developing countries and around the world.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Genetic Variant Linked to Development of Liver Cancer in Hepatitis C Virus Carriers
The research group conduct a genome-wide study to identify risk factors connecting HVC and HCC.
Monday, July 04, 2011
Scientific News
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!