Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

UT Southwestern Researchers Identify Mechanism that Maintains Stem Cells

Published: Tuesday, November 27, 2012
Last Updated: Monday, November 26, 2012
Bookmark and Share
Immune-system receptor maintains stemness of normal adult stem cells and helps leukemia cells growth.

An immune-system receptor plays an unexpected but crucially important role in keeping stem cells from differentiating and in helping blood cancer cells grow, researchers at UT Southwestern Medical Center report in the journal Nature.

“Cancer cells grow rapidly in part because they fail to differentiate into mature cells. Drugs that induce differentiation can be used to treat cancers,” said Dr. Chengcheng “Alec” Zhang, assistant professor in UT Southwestern’s departments of physiology and developmental biology.

“Our research identified a protein receptor on cancer cells that induces differentiation, and knowing the identity of this protein should facilitate the development of new drugs to treat cancers.”

The family of proteins investigated in the study could help open a new field of biology integrating immunology with stem cell and cancer research, he added.

“The receptor we identified turned out to be a protein called a classical immune inhibitory receptor, which is known to maintain stemness of normal adult stem cells and to be important in the development of leukemia,” he said.

Stemness refers to the blood stem cells’ potential to develop into a range of different kinds of cells as needed, for instance to replenish red blood cells lost to bleeding or to produce more white blood cells to fight off infection.

Once stem cells differentiate into adult cells, they cannot go back to being stem cells. Current thinking is that the body has a finite number of stem cells and it is best to avoid depleting them, Dr. Zhang explained.

Prior to this study, no high-affinity receptors had been identified for the family of seven proteins called the human angiopoetic-like proteins. These seven proteins are known to be involved in inflammation, supporting the activity of stem cells, breaking down fats in the blood, and growing new blood vessels to nourish tumors.

Because the receptor to which these proteins bind had not been identified, the angiopoetic-like proteins were referred to as “orphans,” he said.

The researchers found that the human immune-inhibitory receptor LILRB2 and a corresponding receptor on the surface of mouse cells bind to several of the angiopoetic-like proteins.

Further studies, Dr. Zhang said, showed that two of the seven family members bind particularly well to the LILRB2 receptor and that binding exerts an inhibitory effect on the cell, similar to a car’s brakes.

In the case of stem cells, inhibition keeps them in their stem state. They retain their potential to mature into all kinds of blood cells as needed but they don’t use up their energy differentiating into mature cells.

That inhibition helps stem cells maintain their potential to create new stem cells because in addition to differentiation, self-renewal is the cells’ other major activity, Dr. Zhang said. He stressed that the inhibition doesn’t cause them to create new stem cells but does preserve their potential to do so.

In future research, the scientists hope to find subtle differences between stem cells and leukemia cells that will identify treatments to block the receptors’ action only in leukemia.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Researchers Discover Molecule that Accelerates Tissue Regeneration
Newly discovered molecule, SW033291 accelerate cell recovery following bone marrow transplants.
Friday, June 12, 2015
UT Southwestern Faculty Members Named HHMI Investigators
Appointment of Dr. Kim Orth and Dr. Joshua Mendell to HHMI.
Saturday, May 23, 2015
Scientists Identify Key Receptors Behind Development of AML
Blocking ITIM-receptor signaling in combination with conventional therapies may represent a novel strategy for AML treatment.
Saturday, May 02, 2015
Study Reveals Molecular Genetic Mechanisms Driving Breast Cancer Progression
The findings are published online and in the journal Molecular Cell.
Saturday, April 04, 2015
New Cyclotron Facility at UT Southwestern
Expands research opportunities and imaging capabilities for detecting, tracking cancer.
Friday, March 20, 2015
Acetate Supplements Shown to Speed Up Cancer Growth
A major compound produced in the gut by host bacteria.
Friday, February 20, 2015
MAGE Genes Provide Insight into Optimizing Chemotherapy
UT Southwestern Medical Center scientists have identified a new biomarker that could help identify patients who are more likely to respond to certain chemotherapies.
Tuesday, February 17, 2015
Researchers Identify ‘Achilles heel’ in Metabolic Pathway
Achilles heel could lead to new lung cancer treatments.
Saturday, February 14, 2015
Study Links Deficiency of Cellular Housekeeping Gene with Aggressive Forms of Breast Cancer
Research team studies genes involved in the autophagy process and their roles in cancer, aging, infections, and neurodegenerative diseases.
Saturday, January 31, 2015
Targeting The Cell’s ‘Biological Clock’
Researchers target the cell’s ‘biological clock’ in promising new therapy to kill cancer cells, shrink tumor growth.
Monday, January 05, 2015
Whole-Genome Sequencing Successfully Identifies Cancer-Related Mutations
UT Southwestern Medical Center cancer researchers have demonstrated that whole-genome sequencing can be used to identify patients’ risk for hereditary cancer.
Wednesday, December 24, 2014
Scientists Identify New and Beneficial Function of Endogenous Retroviruses
Researchers found that ERV play a critical role in the body’s immune defense against common bacterial and viral pathogens.
Friday, December 19, 2014
Signaling Mechanism Could Be Target For Survival, Growth Of Tumor Cells In Brain Cancer
Non-canonical EGFR signalling shown to make glioblastoma tumor cells more resistant to chemotherapy treatment.
Monday, December 15, 2014
Cancer Researchers Identify Gene Mutations and Process for How Kidney Tumors Develop
Researchers have identified more than 3,000 new mutations by using next generation gene sequencing techniques.
Saturday, November 29, 2014
Study Identifying Cell of Origin for Large, Disfiguring Nerve Tumors
Lays groundwork for development of new therapies.
Wednesday, November 12, 2014
Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Nanoparticles Used to Breach Mucus Barrier in Lungs
Proof-of-concept study conducted in mice is a key step toward better treatments for lung diseases.
Watching a Tumour Grow in Real-Time
Researchers from the University of Freiburg have gained new insight into the phases of breast cancer growth.
Childhood Cancer Cells Drain Immune System’s Batteries
Cancer cells in neuroblastoma contain a molecule that breaks down a key energy source for the body’s immune cells, leaving them too physically drained to fight the disease.
Urine Proteins Point to Early-Stage Pancreatic Cancer
A combination of three proteins found at high levels in urine can accurately detect early-stage pancreatic cancer, researchers at the BCI have shown.
Researcher Discovers Trigger of Deadly Melanoma
New research sheds light on the precise trigger that causes melanoma cancer cells to transform from non-invasive cells to invasive killer agents, pinpointing the precise place in the process where "traveling" cancer turns lethal.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!