Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Multitasking Plasmonic Nanobubbles Kill some Cells, Modify Others

Published: Thursday, December 06, 2012
Last Updated: Thursday, December 06, 2012
Bookmark and Share
Rice University discovery could simplify and improve difficult processes used to treat diseases, including cancer.

Researchers at Rice University have found a way to kill some diseased cells and treat others in the same sample at the same time. The process activated by a pulse of laser light leaves neighboring healthy cells untouched.

The unique use for tunable plasmonic nanobubbles developed in the Rice lab of Dmitri Lapotko shows promise to replace several difficult processes now used to treat cancer patients, among others, with a fast, simple, multifunctional procedure.

The research is the focus of a paper published online this week by the American Chemical Society journal ACS Nano and was carried out at Rice by Lapotko, research scientist and lead author Ekaterina Lukianova-Hleb and undergraduate student Martin Mutonga, with assistance from the Center for Cell and Gene Therapy at Baylor College of Medicine (BCM), Texas Children’s Hospital and the University of Texas MD Anderson Cancer Center.

Plasmonic nanobubbles that are 10,000 times smaller than a human hair cause tiny explosions. The bubbles form around plasmonicgold nanoparticles that heat up when excited by an outside energy source – in this case, a short laser pulse – and vaporize a thin layer of liquid near the particle’s surface. The vapor bubble quickly expands and collapses. Lapotko and his colleagues had already found that plasmonic nanobubbles kill cancer cells by literally exploding them without damage to healthy neighbors, a process that showed much higher precision and selectivity compared with those mediated by gold nanoparticles alone, he said.

The new project takes that remarkable ability a few steps further. A series of experiments proved a single laser pulse creates large plasmonic nanobubbles around hollow gold nanoshells, and these large nanobubbles selectively destroy unwanted cells. The same laser pulse creates smaller nanobubbles around solid gold nanospheres that punch a tiny, temporary pore in the wall of a cell and create an inbound nanojet that rapidly “injects” drugs or genes into the other cells.

In their experiments, Lapotko and his team placed 60-nanometer-wide hollow nanoshells in model cancer cells and stained them red. In a separate batch, they put 60-nanometer-wide nanospheres into the same type of cells and stained them blue.

After suspending the cells together in a green fluorescent dye, they fired a single wide laser pulse at the combined sample, washed the green stain out and checked the cells under a microscope. The red cells with the hollow nanoshells were blasted apart by large plasmonic nanobubbles. The blue cells were intact, but green-stained liquid from outside had been pulled into the cells where smaller plasmonic nanobubbles around the solid gold nanoparticles temporarily pried open the walls.

Because all of this happens in a fraction of a second, as many as 10 billion cells per minute could be selectively processed in a flow-through system like that under development at Rice, said Lapotko, a faculty fellow in biochemistry and cell biology and in physics and astronomy. That has potential to advance cell and gene therapy and bone marrow transplantation, he said.

Most disease-fighting cell and gene therapies require “ex vivo” – outside the body – processing of human cell grafts to eliminate unwanted (like cancerous) cells and to genetically modify other cells to increase their therapeutic efficiency, Lapotko said. “Current cell processing is often slow, expensive and labor intensive and suffers from high cell losses and poor selectivity. Ideally both elimination and transfection (the introduction of materials into cells) should be highly efficient, selective, fast and safe.”

Plasmonic nanobubble technology promises “a method of doing multiple things to a cell population at the same time,” said Malcolm Brenner, a professor of medicine and of pediatrics at BCM and director of BCM’s Center for Cell and Gene Therapy, who collaborates with the Rice team. “For example, if I want to put something into a stem cell to make it turn into another type of cell, and at the same time kill surrounding cells that have the potential to do harm when they go back into a patient — or into another patient — these very tunable plasmonic nanobubbles have the potential to do that.”

The long-term objective of a collaborative effort among Rice, BCM, Texas Children’s Hospital and MD Anderson is to improve the outcome for patients with diseases whose treatment requires ex vivo cell processing, Lapotko said.

Lapotko plans to build a prototype of the technology with an eye toward testing with human cells in the near future. “We’d like for this to be a universal platform for cell and gene therapy and for stem cell transplantation,” he said.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Red Means ‘Go’ to Therapeutic Viruses
Rice University scientists use light to switch viral activity and deliver cargoes to cells.
Thursday, December 03, 2015
Biomarker Finder Adjusts On the Fly
Rice University scientists build better tool to find signs of disease.
Thursday, October 22, 2015
Researchers Find New Clue to Halting Leukemia Relapse
A protein domain once considered of little importance may be key to helping patients who are fighting acute myeloid leukemia (AML) avoid a relapse.
Friday, September 11, 2015
Cancer Treatment Models get Real
Researchers at Rice Univ. and Univ. of Texas MD Anderson Cancer Center have developed a way to mimic the conditions under which cancer tumors grow in bones.
Thursday, August 06, 2015
New Statistical Tools Being Developed for Mining Cancer Data
Team from Rice, BCM, UT Austin tackling big data variety.
Monday, December 02, 2013
Physicists Decode Decision Circuit of Cancer Metastasis
Rice U. research reveals three-way genetic switch for cancer metastasis.
Thursday, October 31, 2013
Rice Writes Rules for Gene-Therapy Vectors
Researchers compute, then combine benign viruses to fight disease.
Thursday, August 15, 2013
Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
'Junk' DNA Plays Role in Preventing Breast Cancer
Supposed "junk" DNA, found in between genes, plays a role in suppressing cancer, according to new research by Universities of Bath and Cambridge.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!