Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Prostate Cancer Now Detectable Using Imaging-Guided Biopsy

Published: Thursday, December 13, 2012
Last Updated: Thursday, December 13, 2012
Bookmark and Share
Groundbreaking research by a team of UCLA physicians and engineers demonstrates that prostate cancer can be diagnosed far more easily and accurately using a new image-guided, targeted biopsy procedure.

Traditionally, prostate tumors have been found through so-called blind biopsies, in which tissue samples are taken systematically from the entire prostate in the hopes of locating a piece of tumor — a technique that dates back to the 1980s. But the cancer now appears detectable by direct sampling of tumor spots found using magnetic resonance imaging, or MRI, in combination with real-time ultrasound, the researchers say.
 
The findings are published Dec. 10 in the early online edition of the Journal of Urology and are scheduled for print publication in the journal's January issue.
 
The UCLA study indicates that the MRI–ultrasound fusion biopsy, which is much more accurate than a conventional blind biopsy, may lead to a reduction in the number of prostate biopsies performed and could allow for the early detection of serious prostate cancers.
 
The study involved 171 men who were either undergoing active surveillance to monitor slow-growing prostate cancers or who, despite prior negative biopsies, had persistently elevated levels of prostate-specific antigen (PSA), a protein produced by the prostate that can indicate the presence of cancer . The UCLA biopsies using the new technique were done in about 20 minutes in an outpatient clinic setting under local anesthesia.
 
Nearly all of the 1 million prostate biopsies performed annually in the U.S. are triggered by elevations in PSA levels, and about 240,000 new cases of prostate cancer are discovered each year. Thus, about 75 percent of biopsies are negative for cancer. However, many men with negative biopsies but elevated PSA levels may still harbor malignant tumors — tumors missed by conventional biopsies, said the study's senior author, Dr. Leonard S. Marks, a professor of urology and director of UCLA's active surveillance program.
 
"Early prostate cancer is difficult to image because of the limited contrast between normal and malignant tissues within the prostate," Marks said. "Conventional biopsies are basically performed blindly because we can't see what we're aiming for. Now, with this new method, which fuses MRI and ultrasound, we have the potential to see the prostate cancer and aim for it in a much more refined and rational manner."
 
The new targeting process is the result of four years of work funded by the National Cancer Institute and based at the Clark Urology Center at UCLA.
 
Since the mid-1980s, prostate cancer has been diagnosed using trans-rectal ultrasound to sample the prostate. Unlike most other cancers, prostate cancer is the only major malignancy diagnosed without actually visualizing the tumor as a biopsy is done, Marks said.
 
With the advent of sophisticated MRI, the ability to image the prostate improved and provided a picture of tumors within the organ. However, attempting to biopsy the prostate with the patient inside an MRI machine proved to be cumbersome, expensive and time-consuming. But with the development of the new MRI–ultrasound fusion process, the biopsy can now be performed in a clinic setting.
 
In the study, the volunteers first underwent MRI to visualize the prostate and any lesions. That information was then fed into a device called the Artemis, which electronically fuses the MRI pictures with real-time, three-dimensional ultrasound, allowing the urologist to see the lesion during the biopsy.
 
"With the Artemis, we have a virtual map of the suspicious areas placed directly onto the ultrasound image during the biopsy," Marks said. "When you can see a lesion, you've got a major advantage of knowing what's really going on in the prostate. The results have been very dramatic, and the rate of cancer detection in these targeted biopsies is very high. We're finding a lot of tumors that hadn't been found before using conventional biopsies."
 
Prostate cancer was found in 53 percent of 171 study volunteers. Of those tumors found using the fusion biopsy technique, 38 percent had a Gleason score of greater than seven, indicating an aggressive tumor and one more likely to spread than a tumor with lower scores. Once prostate cancer spreads, it's much more difficult to treat, and survival decreases.
 
Robert Meier, a 58-year-old high school art teacher from Visalia, Calif., enrolled in Marks' study after three of his prostate biopsies came back negative for cancer despite his climbing PSA levels.
 
In 2008, Meier tore his rotator cuff, and as part of his pre-surgery exam, blood tests were done. His PSA was at six — four or lower is considered normal. His doctor sent him to an urologist, who performed tests to rule out everything else that could be causing high PSA levels, including infection and an enlarged prostate. The doctor found nothing. Meanwhile Meier's PSA climbed to eight.
 
A biopsy was performed and was negative. Meier's PSA jumped to nine, and yet another biopsy came back negative. When his PSA reached 11.7, another round of biopsies was ordered.
 
"These biopsies can be extremely painful and I was put in the hospital several times so they could be done under general anesthesia," Meier said. "It takes about a month to recover."
 
Like his PSA levels, Meier's anxiety was also rising. If he didn't have prostate cancer, why were his levels going up?
 
After a second opinion in Santa Barbara and months of being tested and treated with a medicine designed to shrink his prostate and lower his PSA, Meier was referred to UCLA and Marks in 2011. By then, his PSA was nearly 18, up more than 10 points in three years. An MRI ultimately revealed a prostate lesion, and he underwent a biopsy using the Artemis device. He did have cancer, and it was aggressive.
 
"Dr. Marks told me that I had a cancer that could spread and it needed to come out now," Meier said. "He told me that at my relatively young age and the severity of the tumor, I had no choice."
 
Meier's prostate and 24 nearby lymph nodes were removed robotically at UCLA in February by Dr. Arnold Chin, an assistant professor of urology. Follow-up tests show that Meier is cancer free today.
 
"This program works," Meier said. "I had jumped through all these hoops and had all these tests with two different doctors and they found nothing. It took UCLA to determine that I had an aggressive cancer that could have killed me. I feel like I was in very good hands at UCLA."
 
The UCLA study team included doctor–scientists from urology, radiology, pathology, the Center for Advanced Surgical and Interventional Technology (CASIT) and biomedical engineering.
 
"Prostate lesions identified on MRI can be accurately targeted with MR-Ultrasound fusion biopsy in a clinic setting using local anesthesia," the study states. "Biopsy findings correlate with the level of suspicion on MRI. Targeted prostate biopsy has the potential to improve the diagnosis of prostate cancer and may aid in the selection of patients for active surveillance and focal therapy."


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
Pan-Cancer Studies Find Common Patterns Shared by Different Tumor Types
Findings may open up new treatment options by extending therapies effective in one cancer type to others with a similar genomic profile.
Wednesday, October 02, 2013
RNA Molecule Is Behind Behavior Changes Cued by Environment
UCSF study may point to key mechanism of cellular memory.
Thursday, September 05, 2013
Disabling Enzyme Cripples Tumors, Cancer Cells
Knocking out a single enzyme dramatically cripples the ability of aggressive cancer cells to spread and grow tumors.
Thursday, September 05, 2013
Scientists Devise Innovative Method to Profile and Predict the Behavior of Proteins
A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell.
Friday, August 09, 2013
Non-Invasive Test Optimizes Colon Cancer Screening
Organized mailing campaigns could substantially increase colorectal cancer screening among uninsured patients.
Wednesday, August 07, 2013
Therapy Could Treat Breast Cancer that's Spread to Brain
Researchers have successfully combined cellular therapy and gene therapy in a mouse-model system to develop a viable treatment strategy for breast cancer that has spread to a patient's brain.
Tuesday, August 06, 2013
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!