Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Evolution: It’s All in How You Splice It

Published: Friday, December 21, 2012
Last Updated: Friday, December 21, 2012
Bookmark and Share
MIT biologists find that alternative splicing of RNA rewires signaling in different tissues and may often contribute to species differences.

When genes were first discovered, the canonical view was that each gene encodes a unique protein. However, biologists later found that segments of genes can be combined in different ways, giving rise to many different proteins.

This phenomenon, known as alternative RNA splicing, often alters the outputs of signaling networks in different tissues and may contribute disproportionately to differences between species, according to a new study from MIT biologists.

After analyzing vast amounts of genetic data, the researchers found that the same genes are expressed in the same tissue types, such as liver or heart, across mammalian species. However, alternative splicing patterns — which determine the segments of those genes included or excluded — vary from species to species.

“The core things that make a heart a heart are mostly determined by a heart-specific gene expression signature. But the core things that make a mouse a mouse may disproportionately derive from splicing patterns that differ from those of rats or other mammals” says Chris Burge, an MIT professor of biology and biological engineering, and senior author of a paper on the findings in the Dec. 20 online edition of Science.

Lead author of the paper is MIT biology graduate student Jason Merkin. Other authors are Caitlin Russell, a former technician in Burge’s lab, and Ping Chen, a visiting grad student at MIT.

A variety of proteins

Alternative RNA splicing (a discovery for which MIT Institute Professor Phillip Sharp shared the 1993 Nobel Prize in medicine or physiology), controls the composition of proteins encoded by a gene. In mammals, genes — made of DNA stored in the cell nucleus — consist of many short segments known as exons and introns. After the DNA is copied into an RNA transcript, all introns and frequently some exons are excised before the messenger RNA (mRNA) leaves the nucleus, carrying instructions to make a specific protein.

This process allows cells to create a much wider variety of proteins than would be possible if each gene encoded only one protein. Some proteins, including Dscam in fruit flies and neurexin in humans, have thousands of alternate forms. These variant proteins can have vastly different functions, Burge says. For example, the full version of a protein may bind to DNA at one end and activate DNA transcription at the other end. If an alternatively spliced form is missing the activation section, it will compete for binding to the same DNA regions as the full-length protein, preventing activation of transcription.

In 2008, Burge and colleagues analyzed mRNA from 10 different human tissues, publishing their results in Nature, and found that nearly every gene is alternatively spliced. Furthermore, most alternative splicing was found to differ among tissues.

In the new study, the researchers compared tissues from several different mammalian species — the rhesus monkey, rat, mouse and cow — as well as one species of bird, the chicken. For each species, the researchers analyzed nine types of tissue (brain, colon, heart, kidney, liver, lung, muscle, spleen and testes) from three individuals, sequencing more than a trillion bases of mRNA.

Using new high-speed sequencing technology, the researchers analyzed both gene expression and alternative splicing patterns in each tissue sample. They found that gene expression patterns were extremely similar across tissues, no matter what species the tissue came from. That is, the genes active in kidney tissue from rats were nearly identical to those turned on in cows’ kidney tissue.

“That was not a big surprise,” Burge says. “It’s consistent with the idea that the gene expression pattern actually determines the identify of the tissue. You need to express certain structural and motor proteins if you’re a muscle cell, and if you’re a neuron you have to express certain synaptic proteins.”

The results from the alternative splicing pattern comparison were very different. Instead of clustering by tissue, the patterns clustered mostly by species. “Different tissues from the cow look more like the other cow tissues, in terms of splicing, than they do like the corresponding tissue in mouse or rat or rhesus,” Burge says.

Because splicing patterns are more specific to each species, it appears that splicing may contribute preferentially to differences between those species, Burge says. “Splicing seems to be more malleable over shorter evolutionary timescales, and may contribute to making species different from one another and helping them adapt in various ways,” he says.

The new study is the first large-scale effort to look at the role of alternative splicing in evolution, says Brenton Graveley, a professor of genetics and developmental biology at the University of Connecticut Health Center. “It provides a lot of new insight into the potential role of alternative splicing in driving differences between species,” says Graveley, who was not involved in this study.

New functions

The researchers also found that a major function of alternative splicing is the addition and deletion of short protein segments that contain one or more phosphorylation sites. Phosphorylation (addition of a phosphate molecule) is a very common way for cells to activate or deactivate proteins.

When a variant form of a protein lacks a key phosphorylation site, it may lose the function of the original form. Phosphorylation can also direct proteins to different locations within the cell, which may alter their function.

Changes in splicing patterns also help to modify the signaling networks that regulate most cellular activity. These networks are often controlled by phosphorylation of proteins involved in the network, many of which can be alternatively spliced. “You can think about it as rewiring signaling networks so they control different outputs. Splicing can add a new output or delete it in a tissue-specific way,” Burge says.

The researchers also identified several thousand new alternative exons in each species, and are now studying how these exons evolved and exploring their potential functions.

The research was funded by a Broad Institute SPARC grant, the National Institutes of Health and the National Science Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 4,000+ scientific posters on ePosters
  • More than 5,300+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Capsule Achieves Long-Term Drug Delivery
Novel drug delivery method could aid in elimination of malaria and treatment of many other diseases.
Monday, November 21, 2016
Predicting Cancer Cells’ Response to Chemotherapy
Researcher develop method for testing cell ability to perform different types of DNA repair, which can reveal tumors’ sensitivity to drugs.
Wednesday, November 02, 2016
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
Friday, October 28, 2016
Fighting Cancer with Immune Response
New treatment elicits two-pronged immune response that destroys tumors in mice.
Tuesday, October 25, 2016
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Thursday, September 29, 2016
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
Thursday, September 15, 2016
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
Thursday, September 15, 2016
Linking RNA Structure and Function
Biologists have deciphered a lncRNA structure and used the information to investigate its cellular protein interactions.
Friday, September 09, 2016
Triple-Action Therapy Patch Shows Promise
Patch that delivers drug, gene, and light-based therapy to tumor sites shows promising results in mice.
Wednesday, July 27, 2016
New Device can Study Electric Field Cancer Therapy
Microfluidic device allows study of electric field cancer therapy through low-intensity fields, preventing malignant cells spreading.
Friday, July 08, 2016
Long-Term Drug Release
New tablet attaches to the lining of the GI tract, resists being pulled away.
Thursday, April 07, 2016
Cancer Cells Remodel Environments Before Spreading
Researchers at MIT have found that the cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Wednesday, March 16, 2016
Paving the Way for Metastasis
Cancer cells remodel their environment to make it easier to reach nearby blood vessels.
Tuesday, March 15, 2016
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
Wednesday, February 03, 2016
No More Insulin Injections?
Encapsulated pancreatic cells offer possible new diabetes treatment.
Tuesday, January 26, 2016
Scientific News
Cancer Genetics: Key to Diagnosis, Therapy
When applied judiciously, cancer genetics directs caregivers to the right drug at the right time, while sparing patients of unnecessary or harmful treatments.
New Mechanism to Control Human Viral Infections Discovered
Researchers discover long sought after mechanism in human cells that could help treat diseases caused by viruses.
Study Reveals New Role for Hippo Pathway in Suppressing Cancer Immunity
Hippo pathway signaling regulates organ size by moderating cell growth, apoptosis and stem cell renewal, but dysregulation contributes to cancer development.
RNAi Activated in Response to Influenza
Discovery could lead to better ways of combating serious infections, including Ebola and Zika.
Gene Therapy Maintains Clotting Factor for Hemophilia Patients
Following a single gene therapy dose, the highest levels of an essential blood clotting factor IX were observed in hemophilia B patients.
Transporting Microscopic Cargo Between Human Cells
Scientists have developed a virus-inspired delivery system for material transport between cells.
Improving Drug Production with Computer Model
A model has been developed that can be used to improve and accelerate the production of biotherapeutics, cancer drugs, and vaccines.
Turning Off Asthma Attacks
Researchers discover a critical cellular “off” switch for the inflammatory immune response that causes asthma attacks.
New Strategy May Drop Cancer’s Guard
Scientists eye ways to deconstruct tumors’ protective wall with current diabetes drug.
Scientists Identify Unique Genomic Features in Testicular Cancer
The findings may shed light on factors in other cancers that influence their sensitivity to chemotherapy.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
4,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,300+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!