Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Serendipity Points to New Potential Target and Therapy for Melanoma

Published: Friday, December 21, 2012
Last Updated: Friday, December 21, 2012
Bookmark and Share
A University of Colorado Cancer Center describes a new target and potential treatment for melanoma, the most dangerous form of skin cancer.

MicroRNA can decide which genes in a cell’s DNA are expressed and which stay silent. Melanoma tends to lack microRNA-26a, which makes the gene SODD go silent.

“It’s a double negative,” says Yiqun Shellman, PhD, investigator at the CU Cancer Center, associate professor at the CU School of Medicine, and the study’s co-senior author. “miR-26a works to stop the growth of cancer. You turn off this thing that should stop growth, and you have growth.”

When Shellman, David Norris and colleagues reintroduced microRNA-26a to melanoma cell lines that lacked it, they saw a marked decrease in cancer cell survival. MicroRNA-26a killed melanoma cells while leaving healthy cells unharmed.

In fact, the discovery started back a couple steps. First the group compared microRNA expression in healthy cells to that of microRNA expression in melanoma cells. “We hoped the difference between microRNA expression in healthy and melanoma cells would show which ones were contributing to tumorgenesis,” Shellman says.

The microRNA most consistently different between healthy and cancerous cells was 26a. The discovery of how it works and what exactly it does was serendipitous. “We started by testing the effect of microRNA-26a on known gene targets to see if it was effecting the expression of logical, cancer-causing pathways, but none of them seemed affected in melanoma,” Shellman says. “We were working with the SODD gene in an unrelated project, and SODD has a putative but not high-scored binding site for miR-26a, and thought, why not test it? Sure enough, it turned out to be the target – microRNA-26a downregulates this gene.”

Shellman hopes this robust finding in cell cultures will help pave the way for future work with microRNA-26a as a therapeutic target in animal models and eventually a human trial.

“The first step is to further pinpoint the genetic signatures of the patients likely to benefit from microRNA-26a replacement therapy,” Shellman says, noting that only some and not all melanoma cells were killed by miRNA replacement. “Maybe it’s simply the downregulation of microRNA-26a itself, or maybe we can use SODD expression as the biomarker,” Shellman says.

Once Shellman and colleagues discover the characteristics of a melanoma susceptible to microRNA-26a treatment, they hope funding will allow the lab to follow the promising therapy up the evolution from cells to humans.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Next-Gen Melanoma Drug Excels in Lab Tests
Anti-cancer activity was reported in 10 out of 11 patient tumor samples grown in mice and treated with the experimental drug TAK-733.
Thursday, November 13, 2014
CU Study Suggests Link Between Tumor Suppressors and Starvation Survival
A particular tumor suppressor gene that fights cancer cells does more than clamp down on unabated cell division, it also can help make cells more fit by allowing them to fend off stress.
Tuesday, May 14, 2013
Scientific News
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Poliovirus Therapy Wins 'Breakthrough' Status
FDA decision will fast-track research on breakthrough Duke brain cancer therapy.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
New Treatment for Pancreatic Cancer
Researchers at Purdue University have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!