Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Two MIT Professors Win Prestigious Wolf Prize

Published: Wednesday, January 09, 2013
Last Updated: Wednesday, January 09, 2013
Bookmark and Share
Michael Artin and Robert Langer honored for groundbreaking work in mathematics and chemistry.

MIT professors Michael Artin and Robert Langer are among eight recipients worldwide of the 2013 Wolf Prize, the Israel-based Wolf Foundation announced this week.

The prestigious international prizes are awarded annually in five categories, each worth $100,000; Artin and Langer were cited for their contributions in mathematics and chemistry, respectively. More than 30 Wolf Prize recipients have gone on to win the Nobel Prize.

Israeli President Shimon Peres will present the prizes in May at a special session hosted by the Knesset, the Israeli parliament.

Artin, a professor emeritus of mathematics at MIT, helped introduce and define a number of tools and theories in modern algebraic geometry, including the Artin Stack, which is a generalized version of an algebraic stack. His contributions to the theory of surface singularities introduced several concepts — such as rational singularity and fundamental cycle — that became seminal to the field.

“Artin is one of the main architects of modern algebraic geometry,” the Wolf Foundation said in announcing him as a winner of the Wolf Prize. “His fundamental contributions encompass a bewildering number of areas in this field. … He is one of the great geometers of the 20th century.”

In 2002, Artin won the American Mathematical Society’s annual Steele Prize for Lifetime Achievement; in 2005, he was awarded the Harvard Centennial Medal. Artin is also a member of the National Academy of Sciences, as well as a fellow of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, the Society for Industrial and Applied Mathematics, and the American Mathematical Society.

Langer, the David H. Koch Institute Professor at MIT, focuses on developing new ways to administer drugs to patients. A biomedical engineer, he developed a variety of novel drug-delivery systems based on polymers, including materials that can release drugs continuously over a prolonged period of time. In the 1970s, Langer developed polymers that allowed the large molecules of a protein to pass through membranes in a controlled manner to inhibit angiogenesis, the process by which tumors recruit blood vessels.

“Robert Langer is primarily responsible for innovations in polymer chemistry that have had profound impact on medicine, particularly in the areas of drug delivery and tissue engineering,” the Wolf Foundation said in its announcement.

Last month, Langer was among 23 eminent researchers nationwide to be awarded the United States’ highest honors for scientists, engineers and inventors. He will receive the National Medal of Technology and Innovation from President Barack Obama at a ceremony this year.

Langer is a member of the Institute of Medicine, the National Academy of Engineering, and the National Academy of Sciences, making him one of only a few people to hold membership in three national academies. Over the years, he has earned more than 200 major awards in science, including the 2006 National Medal of Science, presented by the president of the United States to scientists and engineers who have made important contributions in their fields.

Wolf Prizes have been awarded since 1978 to outstanding scientists and artists “for achievements in the interest of mankind and friendly relations among peoples, irrespective of nationality, race, color, religion, sex or political view.” The prizes are presented annually in agriculture, chemistry, mathematics, medicine, and/or physics, as well as in the arts.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
Friday, July 31, 2015
Firms “Under-invest” in Long-Term Cancer Research
Tweaks to the R&D pipeline could create new drugs and greater social benefit.
Thursday, July 30, 2015
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Thursday, July 23, 2015
Tough biogel structures produced by 3-D printing
Researchers have developed a new way of making tough — but soft and wet — bio-compatible materials, called “hydrogels,” into complex and intricately patterned shapes.
Wednesday, June 03, 2015
Diagnosing Cancer with Help from Bacteria
Engineered probiotics can detect tumors in the liver.
Friday, May 29, 2015
Master Gene Regulator Could Be New Target For Schizophrenia Treatment
Researchers at MIT’s Picower Institute for Learning and Memory have identified a master genetic regulator that could account for faulty brain functions that contribute to schizophrenia.
Wednesday, May 27, 2015
Designing Better Medical Implants
A team of MIT researchers have discovered a novel method for reducing the typical immune system rejection response when implanting biomedical devices into the body.
Wednesday, May 20, 2015
Brain Tumor Weakness Identified
Discovery could offer a new target for treatment of glioblastoma.
Thursday, April 09, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Wednesday, March 04, 2015
New Nanodevice Defeats Drug Resistance
Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs.
Tuesday, March 03, 2015
Proteins Drive Cancer Cells To Change States
When RNA-binding proteins are turned on, cancer cells get locked in a proliferative state.
Monday, December 15, 2014
New Way To Turn Genes On
Technique allows rapid, large-scale studies of gene function.
Thursday, December 11, 2014
New Device Could Make Large Biological Circuits Practical
Innovation from MIT could allow many biological components to be connected to produce predictable effects.
Tuesday, November 25, 2014
Fast Modeling Of Cancer Mutations
New genome-editing technique enables rapid analysis of genes mutated in tumors.
Thursday, October 23, 2014
Chemists Recruit Anthrax to Deliver Cancer Drugs
With some tinkering, a deadly protein becomes an efficient carrier for antibody drugs.
Tuesday, September 30, 2014
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!