Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Molecular Twist Helps Regulate the Cellular Message to Make Histone Proteins

Published: Monday, January 21, 2013
Last Updated: Monday, January 21, 2013
Bookmark and Share
Researchers show for the first time how two key proteins in messenger RNA communicate via a molecular twist to help maintain the balance of histones to DNA.

Histone proteins are the proteins that package DNA into chromosomes.  Everytime the cell replicates its DNA it must make large amounts of newly made histones to organize DNA within the nucleus.

An imbalance in the production of DNA and histones is usually lethal for the cell, which is why the levels of the messenger RNA (mRNA) encoding the histone proteins must be tightly controlled to ensure the proper amounts of histones (not too many and not too few) are made.

In a collaborative effort published online in the January 18, 2013 issue of the journal Science, researchers at the University of North Carolina and Columbia University show for the first time how two key proteins in messenger RNA communicate via a molecular twist to help maintain the balance of histones to DNA.

“This is one of the safeguards that our cells have evolved and it is part of the normal progression through cell division – all growing cells have to use this all of the time,” said study co-author William F. Marzluff, PhD, Kenan Distinguished Professor of biochemistry and biophysics at UNC’s School of Medicine.

Every time a cell divides, Marzluff adds, it has to replicate both DNA and histone proteins and then package them together into chromosomes. “That way, each of the two cells resulting from division has one complete set of genes.”

In humans, the 23 chromosomes that house roughly 35,000 genes are made up of both DNA and histone proteins. The DNA for a histone protein is first transcribed into RNA, which then acts as a guide for building a histone protein. Because the RNA relays a message – in this case a blueprint for a histone protein, it is referred to as messenger RNA, or mRNA.

Histone mRNAs differ from all other mRNAs and end in a stem-loop [or hairpin] sequence that is required for proper regulation of histone mRNAs.  In this study, the Columbia team of Liang Tong, PhD, Professor of biological sciences and the corresponding author on this project, and graduate student Dazhi Tan used crystallography to reveal the structure of two important proteins near the end of the histone mRNA stem-loop. This molecular complex is required for regulating the levels of the histone mRNA.

One of these proteins, stem-loop binding protein (SLBP) is required for translation of histone mRNA into protein, and the other is an exonuclease, which is required to destroy the mRNA. Both were initially identified at UNC by Marzluff and colleague Zbigniew Dominski, PhD, Professor of biochemistry and biophysics, also a study co-author.

“We knew there was some interaction between SLBP and the exonuclease, so we asked Liang to explain how they bind and communicate,” Dominski said. “And the surprising thing was that the proteins do it not by binding to each other but by changing the RNA structure at the site.”

“From the science point of view, that was the most dramatic thing,” Marzluff said. “The way these proteins help each other is either one can twist the RNA so the other can recognize it easier, and they don’t have to touch each other to do that.”

This protein complex is a critical regulator of histone synthesis, and is an important component of cell growth, he adds.  “Interfering with it could provide a new method for interfering with cancer cell growth.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Device Hits Pancreatic Tumors Hard With Toxic Four-Drug Cocktail, Sparing The Body
Researchers at UNC have revealed that an implantable device can deliver a particularly toxic cocktail of drugs directly to pancreatic tumors to stunt their growth and shrink them.
Saturday, February 27, 2016
Potential Brain Cancer Drug Target
UNC Lineberger researchers have reporedt that when they removed Dicer from preclinical models of medulloblastoma, a common type of brain cancer in children, they found high levels of DNA damage in the cancer cells, leading to the cells’ death.
Friday, January 08, 2016
New Gene Therapy For Hemophilia Shows Potential As Safe Treatment
Research showed that bleeding events were drastically decreased in animals with hemophilia B. Using a viral vector to swap out faulty genes proved safe and could be used for the more common hemophilia A.
Tuesday, March 17, 2015
Researchers Silence Leading Cancer-Causing Gene
A novel siRNA-based molecule successfully targets KRAS, a well-studied but hard to halt protein important for cancer development and metastasis.
Monday, November 17, 2014
Three Lung Tumor Subtypes Identified in DNA Profiling Study
The finding may provide clinical information about patient survival in early- or late-stage disease.
Thursday, November 02, 2006
Scientific News
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Altered Metabolism of Four Compounds Drives Glioblastoma Growth
Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
Uncovering How Some Breast Cancers Resist Treatment
A targeted therapy for triple-negative breast cancer (TNBC), the most aggressive form of breast cancer, has shown potential promise in a recently published study.
Characterizing Cancerous Genomic Variations
Tested on large tumor genomics database, REVEALER method allows researchers to connect genomics to cell function.
Activating Cancer-Killing Immune Cells
A UCL research team have discovered that cutting off a sleep-switch on immune cells inside a tumour wakes up the cells and enables the immune system to hunt down and destroy cancer.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!