Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Four-Stranded ‘Quadruple Helix’ DNA Structure Proven to Exist in Human Cells

Published: Monday, January 21, 2013
Last Updated: Monday, January 21, 2013
Bookmark and Share
Discovery opens up possibilities for a new generation of targeted therapies for cancer.

In 1953, Cambridge researchers Watson and Crick published a paper describing the interweaving ‘double helix’ DNA structure – the chemical code for all life.

Now, in the year of that scientific landmark’s 60th Anniversary, Cambridge researchers have published a paper proving that four-stranded ‘quadruple helix’ DNA structures – known as G-quadruplexes – also exist within the human genome. They form in regions of DNA that are rich in the building block guanine, usually abbreviated to ‘G’.

The findings mark the culmination of over 10 years investigation by scientists to show these complex structures in vivo – in living human cells – working from the hypothetical, through computational modelling to synthetic lab experiments and finally the identification in human cancer cells using fluorescent biomarkers.

The research, published today in Nature Chemistry and funded by Cancer Research UK, goes on to show clear links between concentrations of four-stranded quadruplexes and the process of DNA replication, which is pivotal to cell division and production.

By targeting quadruplexes with synthetic molecules that trap and contain these DNA structures – preventing cells from replicating their DNA and consequently blocking cell division – scientists believe it may be possible to halt the runaway cell proliferation at the root of cancer.

“We are seeing links between trapping the quadruplexes with molecules and the ability to stop cells dividing, which is hugely exciting,” said Professor Shankar Balasubramanian from the University of Cambridge’s Department of Chemistry and Cambridge Research Institute, whose group produced the research.

“The research indicates that quadruplexes are more likely to occur in genes of cells that are rapidly dividing, such as cancer cells. For us, it strongly supports a new paradigm to be investigated – using these four-stranded structures as targets for personalised treatments in the future.”

Physical studies over the last couple of decades had shown that quadruplex DNA can form in vitro – in the ‘test tube’, but the structure was considered to be a curiosity rather than a feature found in nature. The researchers now know for the first time that they actually form in the DNA of human cells.

“This research further highlights the potential for exploiting these unusual DNA structures to beat cancer – the next part of this pipeline is to figure out how to target them in tumour cells,” said Dr Julie Sharp, senior science information manager at Cancer Research UK.

“It’s been sixty years since its structure was solved but work like this shows us that the story of DNA continues to twist and turn.”

The study published today was led by Giulia Biffi, a researcher in Balasubramaninan’s lab at the Cambridge Research Institute.

By building on previous research, Biffi was able to generate antibody proteins that detect and bind to areas in a human genome rich in quadruplex-structured DNA, proving their existence in living human cells.

Using fluorescence to mark the antibodies, the researchers could then identify ‘hot spots’ for the occurrence of four-stranded DNA – both where in the genome and, critically, at what stage of cell division.

While quadruplex DNA is found fairly consistently throughout the genome of human cells and their division cycles, a marked increase was shown when the fluorescent staining grew more intense during the ‘s-phase’ – the point in a cell cycle where DNA replicates before the cell divides.

Cancers are usually driven by genes called oncogenes that have mutated to increase DNA replication – causing cell proliferation to spiral out of control, and leading to tumour growth.

The increased DNA replication rate in oncogenes leads to an intensity in the quadruplex structures. This means that potentially damaging cellular activity can be targeted with synthetic molecules or other forms of treatments.

“We have found that by trapping the quadruplex DNA with synthetic molecules we can sequester and stabilise them, providing important insights into how we might grind cell division to a halt,” said Balasubramanian.

“There is a lot we don’t know yet. One thought is that these quadruplex structures might be a bit of a nuisance during DNA replication – like knots or tangles that form.

“Did they evolve for a function? It’s a philosophical question as to whether they are there by design or not – but they exist and nature has to deal with them. Maybe by targeting them we are contributing to the disruption they cause.”

The study showed that if an inhibitor is used to block DNA replication, quadruplex levels go down – proving the idea that DNA is dynamic, with structures constantly being formed and unformed.

The researchers also previously found that an overactive gene with higher levels of quadruplex DNA is more vulnerable to external interference.

“The data supports the idea that certain cancer genes can be usefully interfered with by small molecules designed to bind specific DNA sequences,” said Balasubramanian.

“Many current cancer treatments attack DNA, but it’s not clear what the rules are. We don’t even know where in the genome some of them react – it can be a scattergun approach.

“The possibility that particular cancer cells harbouring genes with these motifs can now be targeted, and appear to be more vulnerable to interference than normal cells, is a thrilling prospect.

“The ‘quadruple helix’ DNA structure may well be the key to new ways of selectively inhibiting the proliferation of cancer cells. The confirmation of its existence in human cells is a real landmark.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Consortium to Develop and Study Early Stage Drugs
An innovative new Consortium will act as a ‘match-making’ service between pharmaceutical companies and researchers in Cambridge with the aim of developing and studying precision medicines for some of the most globally devastating diseases.
Thursday, July 30, 2015
Scientists Discover a Molecular ‘Switch’ in Cancers of the Testis and Ovary
Research could lead to new drugs to turn ‘switch’ off.
Wednesday, August 07, 2013
Cambridge Scientist Appointed Inaugural Jubilee Professor of the Indian Academy of Sciences
The Indian Academy of Sciences has appointed Professor Ashok Venkitaraman from the University of Cambridge as its first Jubilee Professor in 2012.
Friday, June 29, 2012
Cambridge Botanist Awarded ‘America’s Nobel’ Prize for Medical Research
David Baulcombe, the Professor of Botany at Cambridge University, is being honored with the 2008 Lasker Award for Basic Medical Research.
Friday, October 31, 2008
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos