Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Gene Sequencing Project Mines Data Once Considered 'Junk' for Clues about Cancer

Published: Monday, January 28, 2013
Last Updated: Monday, January 28, 2013
Bookmark and Share
St. Jude Children’s Research Hospital takes new approach to measuring the repetitive DNA at the end of chromosomes and opens new window on mechanisms fueling cancer.

Genome sequencing data once regarded as junk is now being used to gain important clues to help understand disease. The latest example comes from the St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project, where scientists have developed an approach to mine the repetitive segments of DNA at the ends of chromosomes for insights into cancer.

These segments, known as telomeres, had previously been ignored in next-generation sequencing efforts. That is because their repetitive nature meant that the resulting information had defied analysis and the data were labeled as junk. But researchers have now traced changes in the volume of telomeric DNA to particular types of cancer and their underlying genetic mistakes. Investigators found that 32 percent of pediatric solid tumors carried extra DNA for telomeres, compared to just 4 percent of brain tumors and none of the leukemia samples studied. The findings were published recently in the journal Genome Biology.

Using this new approach, the investigators have linked changes in telomeric DNA to mutations in the ATRX gene and to longer telomeres in patients with a subtype of neuroblastoma, a cancer of the sympathetic nervous system. Telomere length limits how many times cells can divide. Mechanisms that maintain or lengthen telomeres contribute to the unchecked cell division that is a hallmark of cancer.

“This paper shows how measuring the DNA content of telomeres can enhance the value of whole- genome sequencing,” said Matthew Parker, Ph.D., the paper’s first author and a St. Jude postdoctoral fellow. “In the case of the ATRX mutation, the telomere findings gave us information about the mutation’s impact that would have been hard to get through other means.”

The results stem from the largest study yet of whole-genome sequencing to measure the content of telomeric DNA. The effort involved whole-genome sequencing of normal and tumor DNA from 235 pediatric patients battling 13 different cancers. For comparison, normal DNA from 13 adult cancer patients was included in the research.

“There’s been a lot of interest among cancer researchers into telomere length,” said Richard Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis. “While more research remains, we think it’s important to begin to characterize the genetic sequences that make up the telomeres. That’s a crucial first step to understanding more precisely any role they may play in cancer.”

The Pediatric Cancer Genome Project sequenced the complete normal and cancer genomes of more than 600 children and adolescents with some of the most aggressive and least understood cancers. Investigators believe the project’s findings will lay the foundation for a new generation of clinical tools. Despite advances, cancer remains the leading cause of death by disease of U.S. children age 1 and older.

The human genome is stored in the four-letter chemical alphabet of DNA, a molecule that stretches more than 3 billion characters in length and provides the instructions for building and sustaining life. Those instructions are the genes that are organized into the 46 chromosomes found in almost every cell.

Each chromosome ends with the same six-letter DNA sequence that is associated exclusively with telomeres. The DNA sequence does not vary, but the number of times it is repeated does, affecting the length of the telomeres. Telomeres shorten each time cells divide, which explains why their length declines naturally with age.

Researchers have known cancer cells use several mechanisms to circumvent the process and keep dividing. But until now the repetitive nature of the telomeric DNA sequence meant they had little to offer researchers using whole-genome sequencing to map the human genome. Other genes can be assigned to a particular spot on a particular chromosome; telomeres cannot.

“For scientists analyzing whole-genome sequencing data the telomeres were just a headache,” said the study’s corresponding author Jinghui Zhang, Ph.D., an associate member of the St. Jude Department of Computational Biology. “We could not properly map them to a position on the human genome, so we didn’t really use them.”

Then listening to a colleague’s presentation, Parker had an idea: “Why not just count the telomeric DNA and look for changes between the normal and cancer cells of patients?”

Zhang said the question was a conceptual leap in thinking about how to use whole-genome sequencing data to study telomeres and cancer. “This is the classic story of how one person’s problem is another person’s gold,” she said.

Parker and his colleagues developed an approach that correctly distinguished between older and younger individuals based on the amount of telomeric DNA in their blood or bone marrow cells. Researchers used three other methods to confirm that whole-genome sequencing could be used to reliably capture telomeric DNA differences between normal and cancer cells. Additional supportive evidence came when investigators found that the method yielded similar estimates of the telomeric DNA content of twins with leukemia who shared similar genetic alterations.

When investigators used the method to study pediatric cancer patients, they found tumors that gained telomeric DNA were also more likely to contain chromosomal abnormalities, including rearrangements within and between chromosomes. Researchers also found that different cancers had distinct patterns of telomeric DNA change. In some cases, the change offered clues about the mechanism responsible for lengthening the telomeres, pointing to a process called alternative lengthening of telomeres.

The other authors are Xiang Chen, Armita Bahrami, James Dalton, Michael Rusch, Gang Wu, John Easton, Michael Dyer, Charles Mullighan, Richard Gilbertson, Suzanne Baker, Gerard Zambetti, David Ellison and James Downing, all of St. Jude; Nai-Kong Cheung, Memorial Sloan-Kettering Cancer Center, New York; and Elaine Mardis, of The Genome Institute at Washington University, St. Louis.

The research was funded in part by the Pediatric Cancer Genome Project, including Kay Jewelers, a lead partner; a Cancer Center Support Grant (CA021765) from the National Cancer Institute at the National Institutes of Health; the Henry Schueler 41&9 Foundation in conjunction with Partnership4Cures; and ALSAC.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor Suppressor Protein Plays Key Role In Maintaining Immune Balance
St. Jude Children’s Research Hospital scientists show that the PTEN tumor suppressor protein is essential for proper regulatory T cell function; discovery offers new focus for improving treatment of autoimmune diseases.
Wednesday, January 21, 2015
Mechanism Offers Promising New Approach for Harnessing the Immune System to fight Cancer
Researchers discover how to unleash the immune system against cancer in mice without triggering autoimmune reactions.
Thursday, August 08, 2013
Gene Identified as a New Target for Treatment of Aggressive Childhood Eye Tumor
St. Jude Children’s Research Hospital – Washington University Pediatric Cancer Genome Project findings help solve mystery of retinoblastoma’s rapid growth in work that also yields a new treatment target and possible therapy.
Monday, January 16, 2012
Scientific News
Retractable Protein Nanoneedles
The ability to control the transfer of molecules through cellular membranes is an important function in synthetic biology; a new study from researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering and Harvard Medical School (HMS) introduces a novel mechanical method for controlling release of molecules inside cells.
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!