Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

BioChemics Awarded Patent for Development of Bifunctional Synthetic Molecules

Published: Thursday, January 31, 2013
Last Updated: Thursday, January 31, 2013
Bookmark and Share
A novel drug delivery and efficacy enhancement technology.

BioChemics announced today that it has received a patent for a new breakthrough drug delivery technology. This technology called Bifunctional Synthetic Molecule, or BSM, involves covalently bonding two existing different molecules together to create a unique, new and chemically-stable molecule which contains desired physicochemical properties for the purpose of enhanced dermal, or other tissue, penetration. BSM also provides co-localization of the different components of the new molecule in the target tissue at the same time, further enhancing efficacy of the drug.

These new molecules allow BioChemics to create new chemical entities (NCE’s) with bifunctional characteristics that are, in some examples, designed to have superior tissue penetration properties and tissue targeting properties. In other examples, the BSM is designed to have a covalent bond that is both tissue-specific and enzyme-labile that releases the different functionalities of the BSM once it is deposited at the target tissue. The multiple functionalities, impacting the target tissue simultaneously, boosts efficacy and enhances disease therapy. We believe that this technology gives BioChemics the potential to re-engineer many existing drugs creating new classes of pharmaceutical agents that have an enhanced efficacy, enhanced pharmacology, and improved safety profiles. The BSM technology is designed to enhance the delivery of drugs and to improve the therapeutic index of the drug by promoting the optimal tissue distribution for maximum therapeutic impact.

“I am excited that we have been awarded this new technology,” said John Masiz, President of BioChemics Inc. “This technology may allow us to create ‘smart drugs’ that have the ability to find the specific diseased tissue target in the body and then concentrate the active drug into that specific tissue for a better therapeutic event. Further, this technology may minimize side effects since non-targeted tissue will not be impacted. This new system continues to build on BioChemics’ predecessor VALE technology and further confirms that advances in drug delivery will be the major source of pharmaceutical advancement over the next decade.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
Viral Gene Editing System Corrects Genetic Liver Disease
Penn study has implications for developing safe therapies for an array of rare diseases via new gene cut-and-paste methods.
Improving Delivery of Poorly Soluble Drugs Using Nanoparticles
A technology that could forever change the delivery of drugs is undergoing evaluation by the Technology Evaluation Consortium™ (TEC). Developed by researchers at Northeastern University, the technology is capable of creating nanoparticle structures that could deliver drugs into the bloodstream orally – despite the fact that they are normally poorly soluble.
Curing Disease by Repairing Faulty Genes
New delivery method boosts efficiency of CRISPR genome-editing system.
'Junk' DNA Plays Role in Preventing Breast Cancer
Supposed "junk" DNA, found in between genes, plays a role in suppressing cancer, according to new research by Universities of Bath and Cambridge.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!