Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

New Target To Stop Cancer’s Spread Discovered By Georgia State University Scientists

Published: Monday, February 04, 2013
Last Updated: Monday, February 04, 2013
Bookmark and Share
Disrupting a key interaction between two types of proteins in cells inhibits the spread of cancerous cells, providing researchers with a new pathway toward developing cancer-fighting drugs.

Cell migration is essential for the spread of cancerous cells, also known as metastasis, as well as for other diseases. The research team in the labs of Zhi-Ren Liu, professor of biology, and Jenny Yang, professor of biochemistry, studied the interaction of two molecules, p68 RNA helicase and calcium-calmodulin.

Interrupting the interaction between p68 and calcium-calmodulin, which is essential for cell migration, inhibited metastasis.

The findings were recently published in Nature Communications.

“Cancer, at its primary site, will not necessary kill,” Liu explained. “Cancer kills by multi-site metastasis. If we are able to disrupt this interaction, we will able to inhibit cancer metastasis. The research indicates that the interaction is absolutely required for all cell migration, and we suspect it may not be limited to cancerous-type cells. It may be a general phenomenon for all cell types.”

Calcium-calmodulin is an important protein, acting like a messenger to turn different proteins on and off, said Yang, whose lab focuses on calcium’s role in biological processes.

“Calmodulin is a very interesting protein and it interacts with many different systems in response to calcium level changes,” she said. “We have demonstrated a new target. There are new ways possible to modulate calcium signaling as a way to treat diseases.”

Because cell migration is a common phenomenon that is not only normal, but also related to diseases, there are impacts on treating other diseases, Liu said, from inflammation to neurodegenerative diseases and heart disease.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
Enzyme Links Age-Related Inflammation, Cancer
Researchers have shown that an enzyme key to regulating gene expression -- and also an oncogene when mutated -- is critical for the expression of numerous inflammatory compounds that have been implicated in age-related increases in cancer and tissue degeneration.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!