Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Sigma® Life Science Launches Tough Decoy miRNA Inhibitors

Published: Monday, February 18, 2013
Last Updated: Monday, February 18, 2013
Bookmark and Share
Company has released Tough Decoy RNAs in collaboration with University of Tokyo Drs. Hideo Iba and Takeshi Haraguchi.

Sigma-Aldrich® Corporation has announced that Sigma Life Science, its innovative biological products and services business, through an exclusive collaboration with Drs. Hideo Iba and Takeshi Haraguchi at the University of Tokyo, has released MISSION® Synthetic and Lentiviral microRNA Inhibitors based upon the Tough Decoy (TuD) design for the long-term suppression of any miRNA endogenous to humans or mice.

Custom designs for other species are available upon request. Each microRNA inhibitor is designed using a proprietary algorithm that evaluates all possible sequences for the design predicted to best maintain the TuD structure, providing maximal miRNA recognition and binding.

For more information, visit www.sigma.com/inhibitors.

Naturally-occurring miRNAs inhibit translation of a large percentage of mRNAs encoding human proteins and play pivotal roles in oncogenesis, development, cell differentiation, and immune responses.

Iba and Haraguchi invented TuD RNAs as a more potent tool to suppress specific miRNAs and thus investigate their biological functions.

In contrast to current approaches that use single-stranded RNAs, such as sponge decoys and locked nucleic acids, TuD RNAs are double-stranded.

This, along with a stem-loop stabilized secondary structure, resists cellular nuclease degradation and facilitates sustained miRNA inhibition for longer than one month.

In addition, both strands of a TuD RNA contain a miRNA binding site for more efficient sequestration of target miRNAs at lower, nanomolar concentrations.

“Drs. Iba and Haraguchi’s Tough Decoy RNAs are an elegant and more practical tool for exploring the impact of microRNA gene regulation on human disease. Sigma Life Science’s mission is to support this field’s rapid development by making keystone technologies like this broadly accessible,” says Dr. Supriya Shivakumar, Director of Emerging Technologies at Sigma Life Science.

Sigma Life Science provides the TuD RNAs in both synthetic and lentiviral formats to support transient miRNA knockdown as well as long-term miRNA suppression without repeated transfections.

The miRNA binding sites are designed using human and mouse sequence data from the most recent version of miRBase (v.19).

Many other tools for miRNA screening, identification, and validation experiments are available from Sigma Life Science. These include synthetic human miRNA mimics, a miRNA isolation kit, a method to identify the specific gene(s) that a miRNA targets (licensed exclusively from Dr. Joop Gäken at King’s College London), and a library of human 3′UTRs for validating many miRNA gene targets.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!