Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Actium BioSystems Demonstrates in Vivo Feasibility of Its Thermal Nanomedicine Cancer Treatment

Published: Wednesday, February 27, 2013
Last Updated: Wednesday, February 27, 2013
Bookmark and Share
Actium Cancer Treatment (ACT) platform’s controlled heat (hyperthermia) has the potential to substantially increase the efficacy of chemotherapy and radiation.

Actium BioSystems disclosed that its novel system platform, ACT, for selectively delivering controlled hyperthermia as an adjuvant to chemotherapy, has been validated via in vivo studies by two independent authorities, including Duke University Medical Center and a contract research facility. Actium is now preparing for safety and pharmacokinetic studies to support an application to the FDA for permission to commence First-In-Human clinical studies as soon as possible.

The in vivo studies successfully demonstrated that Actium technology is able to selectively achieve therapeutic temperatures in the bladder using an intravesical (in the bladder) nanoparticle-mediated hyperthermia approach. It has been known for many years that heat weakens and kills cancer. But heat also affects normal, healthy tissue the same as cancer cells—except that low-temperature heat, from the normal body temperature of 370C (98.60F) to less than about 420C, has little effect on healthy tissue, but can weaken and kill cancer cells. This is the basic concept of treating cancer with low-temperature heat, called hyperthermia.

The scientific literature on the efficacy of hyperthermia treatment is voluminous; numerous clinical studies have demonstrated hyperthermia can more than triple the efficacy of radiation therapy in select tumors without an increase in systemic toxicity, and can enhance the efficacy of a number of chemotherapeutic agents, providing a safe and effective treatment for many types of solid tumors. Unfortunately, these clinical outcomes were achieved using conventional hyperthermia technology that, due to inherent design limitations, has faced tremendous difficulties in producing optimal and consistent results cost-effectively. Now, there’s ACT...

“While the clinical benefits of combining heat (hyperthermia) and chemotherapy in treating bladder cancer are well-established, the big challenge has been how to deliver the heat without harming healthy tissue. Actium has developed a selective-heating technology, ACT, which is designed to be effective, simple to use and precise, with minimal heating of adjacent healthy tissue,” said Joe Tondu, President and CEO of Actium BioSystems.

“The fact is that there is a significant unmet clinical need for treating bladder cancer, which recurs in about 60% of patients within two years,” said Tondu, who has been touched by cancer many times. He watched his wife fight breast cancer. And he has watched his father, aunts, uncles, cousins, friends, neighbors, and longtime family friend and business partner succumb to cancer.

“The ACT System is designed to solve the selective-heating problem by exciting only magnetic nanoparticles to the precise temperature needed to increase the efficacy of traditional cancer treatments,” says Tondu. “Our technology has been validated by in vivo studies, and we are moving into clinical trials as soon as possible.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Scientists Find Lethal Vulnerability in Treatment-Resistant Lung Cancer
The study describes how the drug Selinexor killed lung cancer cells and shrank tumors in mice when used against cancers driven by the aggressive and difficult-to-treat KRAS cancer gene.
‘Cellbots’ Chase Down Cancer, Deliver Drugs Directly to Tumors
Programmable T cells shown to be versatile, precise, and powerful in lab studies.
Nanosensors Could Determine Tumours’ Ability to Remodel Tissue
Researchers design nanosensors that can profile tumours, focusing on protease levels.
Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Blood Pressure Drug May Boost Effectiveness of Lung Cancer Treatment
Researchers at Imperial College London have suggested that the blood pressure drug may make a type of lung cancer treatment more effective.
Wearable Microscope Can Measure Fluorescent Dyes Through Skin
UCLA research could make monitoring disease biomarkers easier and more cost-effective.
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!