Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Actium BioSystems Demonstrates in Vivo Feasibility of Its Thermal Nanomedicine Cancer Treatment

Published: Wednesday, February 27, 2013
Last Updated: Wednesday, February 27, 2013
Bookmark and Share
Actium Cancer Treatment (ACT) platform’s controlled heat (hyperthermia) has the potential to substantially increase the efficacy of chemotherapy and radiation.

Actium BioSystems disclosed that its novel system platform, ACT, for selectively delivering controlled hyperthermia as an adjuvant to chemotherapy, has been validated via in vivo studies by two independent authorities, including Duke University Medical Center and a contract research facility. Actium is now preparing for safety and pharmacokinetic studies to support an application to the FDA for permission to commence First-In-Human clinical studies as soon as possible.

The in vivo studies successfully demonstrated that Actium technology is able to selectively achieve therapeutic temperatures in the bladder using an intravesical (in the bladder) nanoparticle-mediated hyperthermia approach. It has been known for many years that heat weakens and kills cancer. But heat also affects normal, healthy tissue the same as cancer cells—except that low-temperature heat, from the normal body temperature of 370C (98.60F) to less than about 420C, has little effect on healthy tissue, but can weaken and kill cancer cells. This is the basic concept of treating cancer with low-temperature heat, called hyperthermia.

The scientific literature on the efficacy of hyperthermia treatment is voluminous; numerous clinical studies have demonstrated hyperthermia can more than triple the efficacy of radiation therapy in select tumors without an increase in systemic toxicity, and can enhance the efficacy of a number of chemotherapeutic agents, providing a safe and effective treatment for many types of solid tumors. Unfortunately, these clinical outcomes were achieved using conventional hyperthermia technology that, due to inherent design limitations, has faced tremendous difficulties in producing optimal and consistent results cost-effectively. Now, there’s ACT...

“While the clinical benefits of combining heat (hyperthermia) and chemotherapy in treating bladder cancer are well-established, the big challenge has been how to deliver the heat without harming healthy tissue. Actium has developed a selective-heating technology, ACT, which is designed to be effective, simple to use and precise, with minimal heating of adjacent healthy tissue,” said Joe Tondu, President and CEO of Actium BioSystems.

“The fact is that there is a significant unmet clinical need for treating bladder cancer, which recurs in about 60% of patients within two years,” said Tondu, who has been touched by cancer many times. He watched his wife fight breast cancer. And he has watched his father, aunts, uncles, cousins, friends, neighbors, and longtime family friend and business partner succumb to cancer.

“The ACT System is designed to solve the selective-heating problem by exciting only magnetic nanoparticles to the precise temperature needed to increase the efficacy of traditional cancer treatments,” says Tondu. “Our technology has been validated by in vivo studies, and we are moving into clinical trials as soon as possible.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos