Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Trackable Drug-Filled Nanoparticles - a Potential Weapon against Cancer

Published: Monday, March 04, 2013
Last Updated: Monday, March 04, 2013
Bookmark and Share
Tiny particles filled with a drug could be a new tool for treating cancer in the future.

A new study published by Swedish scientists in Particle & Particle Systems Characterization shows how such nanoparticles can be combined to secure the effective delivery of cancer drugs to tumour cells - and how they can be given properties to make them visible in MR scanners and thus rendered trackable.

The team, which consisted of scientists from Karolinska Institutet (KI) and the Royal Institute of Technology (KTH) in Stockholm, and from Chalmers University of Technology in Gothenburg, developed so-called 'theranostic nanoparticles' by combining therapy and diagnostics in one and the same nano material.

"For this study, we produced theranostic nanoparticles able to make pinpoint deliveries of drug payloads to breast cancer cells," says Professor Eva Malmström of the School of Chemical Science and Engineering at KTH. "They are also detectable in an MR scanner and can therefore be used diagnostically. The building blocks that we use are biodegradable and show no signs of toxicity."

The new study has resulted in a method of making such theranostic nanoparticles that spontaneously form themselves out of tailored macromolecules (polymers). The balance between hydrophilic (water attracting) and hydrophobic (water repelling) components are important to the successful outcome of this process, the latter being what makes it possible for the particles to be filled with the drug. A relatively high concentration of the naturally occurring isotope 19F (fluorine) makes the particles show up clearly in high-resolution MR tomograms, and by tracking the theranostic nanoparticles through the body, researchers can learn about how the drug is taken up by the tumour and how efficacious the treatment is.

The researchers filled the nanoparticles with the chemotherapeutic doxorubicin, which is used to treat cancer of the bladder, lungs, ovaries, and breast. They showed through experiments on cultivated cells that the particles, while harmless in themselves, are effective at killing cancer cells when loaded with the drug.

The next step is to develop the system to target brain tumours, pancreatic cancer and drug-resistant breast cancer tumours, which are currently difficult to treat effectively with chemotherapy.

"Adding targeting groups to the surface or by changing the size of or adding ionic groups to our nanoparticles will make it possible to increase the selective uptake of these particles in tumours," says Andreas Nyström, Associate Professor in nanomedicine at the Swedish Medical Nanoscience Center, part of Karolinska Institutet's Department of Neuroscience.

It is hoped that one day this research will lead to tailored chemotherapy treatments that specifically seek out tumour cells. In that the drug, which is toxic to the body, can be delivered more precisely to the tumour, the treatment can be made much more effective with greatly reduced side-effects. The study was financed through a variety of sources, including a grant each from the Swedish Research Council to Dr Nyström and Professor Malmström, who also are affiliated to Polymer Factory Sweden AB.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Hope for Setback-dogged Cancer Treatment
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.
Wednesday, November 28, 2012
Possible New Therapy for the Treatment of a Common Blood Cancer
Research from Karolinska Institutet shows that sorafenib, a drug used for advanced cancer of the kidneys and liver, could also be effective against multiple myeloma.
Friday, September 07, 2012
Scientific News
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Altered Metabolism of Four Compounds Drives Glioblastoma Growth
Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!