Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Trackable Drug-Filled Nanoparticles - a Potential Weapon against Cancer

Published: Monday, March 04, 2013
Last Updated: Monday, March 04, 2013
Bookmark and Share
Tiny particles filled with a drug could be a new tool for treating cancer in the future.

A new study published by Swedish scientists in Particle & Particle Systems Characterization shows how such nanoparticles can be combined to secure the effective delivery of cancer drugs to tumour cells - and how they can be given properties to make them visible in MR scanners and thus rendered trackable.

The team, which consisted of scientists from Karolinska Institutet (KI) and the Royal Institute of Technology (KTH) in Stockholm, and from Chalmers University of Technology in Gothenburg, developed so-called 'theranostic nanoparticles' by combining therapy and diagnostics in one and the same nano material.

"For this study, we produced theranostic nanoparticles able to make pinpoint deliveries of drug payloads to breast cancer cells," says Professor Eva Malmström of the School of Chemical Science and Engineering at KTH. "They are also detectable in an MR scanner and can therefore be used diagnostically. The building blocks that we use are biodegradable and show no signs of toxicity."

The new study has resulted in a method of making such theranostic nanoparticles that spontaneously form themselves out of tailored macromolecules (polymers). The balance between hydrophilic (water attracting) and hydrophobic (water repelling) components are important to the successful outcome of this process, the latter being what makes it possible for the particles to be filled with the drug. A relatively high concentration of the naturally occurring isotope 19F (fluorine) makes the particles show up clearly in high-resolution MR tomograms, and by tracking the theranostic nanoparticles through the body, researchers can learn about how the drug is taken up by the tumour and how efficacious the treatment is.

The researchers filled the nanoparticles with the chemotherapeutic doxorubicin, which is used to treat cancer of the bladder, lungs, ovaries, and breast. They showed through experiments on cultivated cells that the particles, while harmless in themselves, are effective at killing cancer cells when loaded with the drug.

The next step is to develop the system to target brain tumours, pancreatic cancer and drug-resistant breast cancer tumours, which are currently difficult to treat effectively with chemotherapy.

"Adding targeting groups to the surface or by changing the size of or adding ionic groups to our nanoparticles will make it possible to increase the selective uptake of these particles in tumours," says Andreas Nyström, Associate Professor in nanomedicine at the Swedish Medical Nanoscience Center, part of Karolinska Institutet's Department of Neuroscience.

It is hoped that one day this research will lead to tailored chemotherapy treatments that specifically seek out tumour cells. In that the drug, which is toxic to the body, can be delivered more precisely to the tumour, the treatment can be made much more effective with greatly reduced side-effects. The study was financed through a variety of sources, including a grant each from the Swedish Research Council to Dr Nyström and Professor Malmström, who also are affiliated to Polymer Factory Sweden AB.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

New Hope for Setback-dogged Cancer Treatment
Researchers at Karolinska Institutet announce breakthrough in the study of how IGF-1 receptor-binding antibodies can help those with cancer.
Wednesday, November 28, 2012
Possible New Therapy for the Treatment of a Common Blood Cancer
Research from Karolinska Institutet shows that sorafenib, a drug used for advanced cancer of the kidneys and liver, could also be effective against multiple myeloma.
Friday, September 07, 2012
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
Have Your Drug Nano-Delivered Via Microbubble
A UC engineering professor is working to develop effective nanoparticle-bubble drug delivery systems to access precise locations in the body to treat medical conditions such as cancer, eye disease and spinal disc degeneration.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos