Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Cellectis Announced Collaboration Agreement with Stemgent

Published: Monday, March 11, 2013
Last Updated: Sunday, March 10, 2013
Bookmark and Share
Agreement to provide custom genome-engineered iPS cells.

Cellectis Bioresearch has announced a collaboration agreement with Stemgent, Inc. to provide research services that combines mRNA reprogramming technology and genome engineering.

The partnership marries Cellectis bioresearch’s leadership in genome engineering with Stemgent’s expertise in cellular reprogramming.

Stemgent’s proprietary mRNA reprogramming technology addresses the challenges around deriving non-viral non-integrating clinically-relevant induced pluripotent stem (iPS) cells for use in regenerative medicine drug discovery and basic research.

Traditional reprogramming methods can lead to the integration of unwanted genetic material into the host genome and therefore can be disruptive to the reprogrammed cell’s function.

Targeted genome engineering is a powerful technology that can be used to elucidate the genetic basis of diseases and to evaluate drug candidates through the generation of cell-based assays.

Cellectis bioresearch’s TALEN™-based genome engineering technology enables the directed introduction of disease-specific genetic mutations to mimic disease and of reporter genes with fluorescent/luminescent tags to evaluate drug candidate efficacy specificity and toxicity.

Together these two powerful technologies pave the way for clinically-relevant applications in regenerative medicine.

Cellectis Group CEO André Choulika said “The collaboration between Stemgent and Cellectis fits with our mission to enable scientists worldwide with the tools to generate genome-engineered iPS cells for use in their research and regenerative medicine.”

“Drug toxicity testing is an important part of early-stage drug development continued Ian Ratcliffe Stemgent President and CEO. “The challenge researchers face is that current models to test drugs are often inadequate. With this partnership and the combined technologies we can introduce mutations into reprogrammed cells and differentiate them into downstream lineages. Researchers can utilize these cells to test how mutations known and unknown alter the biology of the cells upon exposure to drugs.”


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,200+ scientific posters on ePosters
  • More than 4,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Contagious Cancers Are Spreading in Shellfish
Direct transmission of cancer among some marine animals may be more common than once thought, suggests a new study published in Nature by researchers at Columbia University Medical Center (CUMC).
Fix for 3-Billion-Year-Old Genetic Error
Researchers at The University of Texas at Austin have developed a fix that allows RNA to accurately proofread for the first time.
Revealing the Genetic Causes of Bowel Cancer
A landmark study has given the most detailed picture yet of the genetics of bowel cancer — the UK's fourth most common cancer.
Self-Assembling Protein Shell for Drug Delivery
Made-to-order nano-cages open possibilities of shipping cargo into living cells or fashioning small chemical reactors.
Fighting Resistant Blood Cancer Cells
Biologists present new findings on chronic myeloid leukemia and possible therapeutic approaches.
Tumor Cells Develop Predictable Characteristics
Scientists have discovered that cancer cells at the edge of a tumor that are close to the surrounding environment are predictably different from the cells within the interior of the tumor.
Guided Chemotherapy Missiles
Latching chemotherapy drugs onto proteins that seek out tumors could provide a new way of treating tumors in the brain or with limited blood supply that are hard to reach with traditional chemotherapy.
Solutions for Biotherapeutic Characterization
Innovation to speed the routine.
What Makes a Good Scientist?
It’s the journey, not just the destination that counts as a scientist when conducting research.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,200+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!