Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Epigenetic Mechanism through which Protein SirT2 Regulates Cell Cycle Progression and Genomic Stability

Published: Wednesday, March 20, 2013
Last Updated: Wednesday, March 20, 2013
Bookmark and Share
The study of IDIBELL researchers confirms antitumor properties of sirtuin 2.

The group of Chromatin Biology of the IDIBELL, led by Alex Vaquero, studies the role of a family of proteins called sirtuins in response to metabolic and genotoxic stress and their contribution to the development of diseases such as cancer and aging control .
In this study conducted in collaboration with the research group of Lourdes Serrano Institute of Human Genetics at Rutgers University in New Jersey (USA) and published  in the journal Genes & Development, researchers describe epigenetic mechanisms whereby one of these proteins, the sirtuin 2 (SIRT2) regulates cell cycle progression and genomic stability.
Clinical applications of SIRT2

Recently, sirtuins, particularly SIRT1 and SIRT2, have been linked to neurodegenerative diseases. One of the many factors behind these disorders is oxidative stress and the primary response mechanism of our cells to these conditions is regulated for these proteins.
According to Àles Vaquero, "SirT1 seems to have a guard role against this type of stress while SIRT2 would have in many cases the opposite effect. The pharmaceutical industry seeks SIRT2 inhibitor drugs for use against these diseases. "
The researcher notes that "for this reason it is important to know the tumor suppressor function of SIRT2, and it should be taken into account if, finally, it is offered as treatment."
Control of epigenetic marks

Epigenetic modifications are chemical markers in the genome that result in changes in the expression of genes. One of these brands, the acetylation of the amino acid lysine 16 of histone H4 protein (H4K16Ac), appears to be particularly important in regulating the organization and genome integrity. Thus, alteration of this mark causes genome instability and has been linked directly to cancer.
A few years ago, Vaquero showed that SIRT2 regulates the removal of this epigenetic mark just before beginning the process of cell division (mitosis), probably to allow adequate compaction of chromosomes during mitosis.
In the study published now Genes & Development, IDIBELL researchers have explored the functional relationship between SIRT2, this epigenetic mark and mitosis, to try to understand the consequences of SIRT2 activity and loss of epigenetic marks H4K16Ac during mitosis and cell cycle in general.
Vaquero group found that the deacetylation (eliminating chemical mark) of lysine 16 on histone 4 by SIRT2 promotes the enzyme activity of PR-Set7 whose mission is to deposit another epigenetic mark, methylation, in a position very close to K16, lysine 20 of histone H4 same (H4K20me1). SIRT2 not only regulates the activity of PR-Set7 eliminating H4K16Ac also deacetylating PR-Set7 allowing the expansion of the mark throughout the genome.
"These marks" explained Vaquero "are key to the process of DNA replication and repair in the progression of mitosis, and chromatin compaction."
"SIRT2 acts as the controlling agent: until conditions are right, it doesn't continue the cell cycle" Vaquero explained. "We found that mice in the absence of SirT2, make mitosis and cell division but accumulates genetic damage and increased levels of genomic instability, so these animals are more likely to develop tumors."
"In this job," the researcher said "we have found the mechanism that confirms and explains the antitumor properties of SIRT2 and further linking the role of sirtuins in the control of cell epigenetic memory".

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Keeping Growth in Check
Ribosomal proteins RPL5 and RPL11 play an essential role in normal cell proliferation.
Friday, December 13, 2013
Discovered a Mechanism that Induces Migration of Tumor Cells in Liver Cancer
Coordinated overactivation of TGFb and CXCR4 signaling pathways confer migratory properties to the hepatocellular carcinoma cells.
Wednesday, November 06, 2013
High Levels of RANK Protein Interferes with the Differentiation of Mammary Cells
Levels of this protein increase with age, which could explain the increase in breast cancer risk associated with age.
Wednesday, September 11, 2013
Discovered a Future Therapeutic Target for Lung Cancer Treatment
One of the goals of research in cancer genetics and molecular biology is to get an "on demand" treatment, with maximum effect and minimal toxicity.
Monday, July 22, 2013
Discovered the Role of Noncoding 5S rRNA in Protecting the p53 Tumor Suppressor Gene
Over 50% of tumors are associated with mutations in p53.
Thursday, July 04, 2013
An Epigenetic Change Causes the Block of Antitumor Genes
Healthy cells live in a delicate balance between growth-promoting genes (oncogenes) and those who restrain it (anti-oncogenes or tumor suppressor genes).
Wednesday, June 12, 2013
Identified a Key Protein in Maintaining the Identity of B Lymphocytes
This finding could be useful for the study of blood diseases such as lymphoma and leukemia.
Monday, June 10, 2013
Found in Amish a Genetic Mutation Causing Mental Retardation Very Similar to Angelman Syndrome
It is the first time that associates a mutation in HERC2 with human disease.
Wednesday, March 20, 2013
Octavio Romero, RTICC 2012 Cooperative Research Award in Oncology
Gene and cancer group at IDIBELL reqarded for cancer suppression paper.
Thursday, November 22, 2012
Scientific News
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos