Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Startup Launched from Georgia Tech-Emory University Research Receives $7.9 Million

Published: Tuesday, April 02, 2013
Last Updated: Tuesday, April 02, 2013
Bookmark and Share
Clearside Biomedical, Inc. has received $7.9 million in funding to continue drug and technology development for treatment of ocular diseases.

The new funding is in addition to a $4 million venture capital investment received by Clearside Biomedical in early 2012 that served as the foundation for the startup company.

Santen Pharmaceuticals Co., Ltd in Osaka, Japan, will fund Clearside’s technology development, and has also entered into a research collaboration agreement for posterior ocular diseases. Santen, along with new investor Mountain Group Capital and its affiliates, joins current investors Hatteras Venture Partners in Durham, NC, the Georgia Research Alliance Venture Fund, and the University of North Carolina’s Kenan Flagler Business School Private Equity Fund.

Clearside Biomedical is developing microinjection technology that uses hollow microneedles to precisely deliver drugs to a targeted area at the back of the eye. If the technique proves successful in clinical trials and wins regulatory approval, it could provide an improved method for treating diseases including age-related macular degeneration and glaucoma, as well as other ocular conditions related to diabetes.

The technology was developed in a collaboration between the research groups of Henry Edelhauser, PhD, professor of ophthalmology at Emory University School of Medicine, and Mark Prausnitz, PhD, a Regents’ professor in Georgia Tech’s School of Chemical and Biomolecular Engineering. The National Institutes of Health sponsored research leading to development of the technology.

In contrast to standard treatments, this microneedle technology provides a more targeted approach for treating retinal diseases that confines the drug to the site of disease and reduces side effects from exposing other parts of the eye. Prior to the development of this technology, drugs could be delivered to the retinal tissues at the back of the eye in three ways: injection by hypodermic needle into the eye’s vitreous humor (the gelatinous material that fills the eyeball); eye drops, which have limited ability to reach the back of the eye; and pills taken by mouth that expose the whole body to the drug.

The technology developed by Georgia Tech and Emory uses a hollow micron-scale needle to inject drugs into the suprachoroidal space located between the outer surface of the eye – known as the sclera – and the choroid, a deeper layer that provides nutrients to the rest of the eye. Preclinical research has shown that fluid can flow between the two layers, where it can spread out along the circumference of the eye, targeting structures like the choroid and retina that are now difficult to reach.

By targeting the suprachoroidal space using microscopic needles, the researchers believe they can reduce trauma to the eye, make drugs more effective and reduce complications. The new delivery method could help advance a new series of drugs being developed to target the retina, choroid and other structures in the back of the eye.

“I cannot imagine a better alliance as we continue to understand the role the suprachoroidal space will play in dosing medicine directly to the site of retinal disease in patients experiencing retinal blindness,” says Daniel White, president and CEO of Clearside Biomedical. “The collaboration with Santen prepares an avenue to develop state-of-the-art medications for the critical treatment of sight-threatening diseases.”

In November 2012, Clearside announced its first successful human dosing with the device in a safety and tolerability study in patients with retinal disease.

The U.S. Food and Drug Administration has allowed Clearside Biomedical to pursue testing related to its Investigational New Drug (IND) Application for CLS1001 (triamcinolone acetonide) Suprachoroidal Injectable Suspension. This IND would treat sympathetic ophthalmia, temporal arteritis, uveitis and ocular inflammatory conditions unresponsive to topical corticosteroids. Clinical testing is scheduled to proceed within the next few months.

Samirkumar Patel and Vladimir Zarnitsyn, researchers from the Prausnitz lab who were involved in development of the ocular drug delivery technique, have joined Clearside Biomedical. Edelhauser serves as vice president of scientific affairs and Prausnitz serves on the board of directors of Clearside Biomedical.

The company was formed with the assistance of Georgia Tech’s VentureLab program, Georgia Tech’s center for commercialization, serving faculty, staff and students who want to form startup companies based upon their research or invention.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Tuesday, October 06, 2015
New Evidence that Cancer Cells Change While Moving throughout Body
For the majority of cancer patients it is the spread or “metastasis” of cancer cells from the primary tumor to secondary locations throughout the body that is the problem.
Wednesday, September 04, 2013
Scientific News
Revolutionary Technologies Developed to Improve Outcomes for Lung Cancer Patients
Breath test to detect lung cancer brings oxygen directly to the wound.
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos