Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Technique Directs Immune Cells to Target Leukemia

Published: Wednesday, April 10, 2013
Last Updated: Wednesday, April 10, 2013
Bookmark and Share
Targeted immunotherapy technique directs the patient’s own immune system to attack cancer cells.

A type of targeted immunotherapy induced remission in adults with an aggressive form of leukemia that had relapsed in 5 patients. The early results of this ongoing trial highlight the potential of the approach.

Acute lymphoblastic leukemia (ALL) is cancer in which the bone marrow makes too many lymphocytes, a type of white blood cell. In patients with B-cell ALL, the marrow produces too many B lymphocytes, which make antibodies to help fight infection.

When adult patients with B-cell ALL have remission followed by relapse, the prognosis is poor. Standard treatment uses chemotherapy to kill cancer cells, followed by a transplant of bone marrow stem cells to replace blood-forming cells destroyed by the chemotherapy.

Targeted immunotherapy has proven effective against less aggressive B-cell tumors. This technique directs the patient’s own immune system to attack cancer cells.

The researchers first remove immune cells known as T cells from the patient. These cells are genetically modified to produce an artificial receptor that can latch onto B cells and trigger their destruction. The modified T cells are then infused back into the patient.

As the technique showed success in targeting other types of B-cell tumors, a team led by Drs. Michel Sadelain and Renier J. Brentjens at the Memorial Sloan-Kettering Cancer Center set out to test it in people with relapsed B-cell ALL.

The receptor they added to the patients’ T cells was a chimeric antigen receptor (CAR) designed to target a protein called CD19 found on the surface of B cells.

Their phase I clinical trial was funded in part by NIH's National Cancer Institute (NCI). Results appeared on March 20, 2013, in Science Translational Medicine.

The researchers found that all 5 of the patients who received the therapy were in complete remission within weeks of the CAR-modified T-cell infusion.

Three patients were able to receive bone marrow transplants 1 to 4 months after the cell transfer therapy and were still in remission up to 2 years later.

One patient was unable to receive a stem cell transplant after the targeted therapy and relapsed. Another died while in remission of complications likely unrelated to the therapy.

Overall, the therapy itself was well tolerated. Three of the patients developed fevers and 2 needed high-dose steroid therapy to treat inflammation triggered by the treatment.

“Patients with relapsed B-cell ALL resistant to chemotherapy have a particularly poor prognosis,” Brentjens says. “The ability of our approach to achieve complete remissions in all of these very sick patients is what makes these findings so remarkable and this novel therapy so promising.”

The researchers are now testing the CAR-modified T cells in several more patients. Further clinical trials have also been planned to test whether B-cell ALL patients would benefit from receiving this therapy earlier in the course of disease-either along with initial chemotherapy or during remission to help prevent relapse.

“We need to examine the effectiveness of this targeted immunotherapy in additional patients before it could potentially become a standard treatment for patients with relapsed B-cell ALL,” Brentjens says.

Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,200+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Developing Novel Ear Infection Treatments
Research team engineers antibiotic gel for treating middle ear infections.
Wednesday, September 28, 2016
How Breast Cancers Resist Chemotherapy
Researchers discovered an unexpected way that breast cancers cells with mutant BRCA1 or BRCA2 genes acquire drug resistance and evade chemotherapies.
Wednesday, August 10, 2016
Researchers Develop Software That Could Facilitate Drug Development
AptaTRACE can identify aptamers, potentially speed drug advancement.
Saturday, July 30, 2016
Uncovering a New Principle in Chemotherapy Resistance in Breast Cancer
The NIH study has revealed an entirely unexpected process for acquiring drug resistance that bypasses the need to re-establish DNA damage repair in breast cancers that have mutant BRCA1 or BRCA2 genes.
Thursday, July 21, 2016
Largest-Ever Study of Breast Cancer Genetics in Black Women
The study will identify genetic factors that may underlie breast cancer disparities.
Thursday, July 07, 2016
Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
Scientific News
Unravelling the Role of Key Genes and DNA Methylation in Blood Cell Malignancies
Researchers from the University of Nebraska Medical Center have demonstrated the role of Dnmt3a in safeguarding normal haematopoiesis.
Fighting Cancer with the Power of Immunity
Researchers at MIT have used a combination of four different therapies to activate both of the immune system’s two branches, producing a coordinated attack that led to the complete disappearance of large, aggressive tumors in mice.
Influential Cancer Researcher Receives Agilent Thought Leader Award
Biologist Scott Lowe receives award in recognition for his contributions to cancer biology.
Gene-Editing Cures Genetic Blood Disorder in Mice
New technology may offer minimally invasive treatment for genetic disorders of the blood.
New Compound Shows Promise in Treating Multiple Human Cancers
The research presents a new way to efficiently kill these cancerous cells and holds promise for the treatment of all cancers.
ALS Study Reveals Role of RNA-Binding Proteins
The findings are a significant step forward in validating RNA-based therapy as a treatment for ALS.
IU Research Reveals Link between Molecular Mechanisms in Prostate Cancer and Ewing's sarcoma
Researchers at IU have suggested that the molecular mechanism that triggers the rare disease Ewing's sarcoma could act as a potential new direction for the treatment of more than half of patients with prostate cancer.
Nanomedicine Aims to Improve HIV Drug Therapies
New research aims to improve the administration and availability of drug therapies to HIV patients using nanotechnology.
Lab-on-a-Chip to Help Detect Cancer
In this podcast, we speak to Gustavo Stolovitsky to learn about his career and the work he is doing at IBM Research.
Tumor Markers Reveal Lethality Of Bladder Cancers
Researchers found that detection of certain tumor cells in early stage cancers helps identify high-risk cancers.

SELECTBIO Market Reports
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,200+ scientific videos