Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Seattle Genetics and Collaborators Highlight Multiple Ab-Drug Conjugate (ADC)

Published: Wednesday, April 10, 2013
Last Updated: Wednesday, April 10, 2013
Bookmark and Share
Presentations highlight preclinical data for novel programs and breakthroughs in research to develop highly stable linkers and more potent chemotypes.

Seattle Genetics, Inc. announced that research related to its antibody-drug conjugate (ADC) technology was presented in multiple sessions at the 104th Annual Meeting of the American Association for Cancer Research (AACR) being held in Washington, D.C. Three data presentations highlight the rapid progress being made in ADC technology and testing. This includes preclinical data evaluating ADCs using a potent and newly developed cytotoxic agent, pyrrolobenzodiazepine (PBD) dimer, against two targets, CD33 and CD70. The former, SGN-CD33A, is expected to be advanced into a phase 1 clinical trial in 2013 for patients with acute myeloid leukemia (AML). In addition, preclinical data demonstrate activity of a new ADC for metastatic breast cancer, SGN-LIV1A, utilizing the same proprietary ADC technology as ADCETRIS® (brentuximab vedotin). The company also presented research on a novel method for making highly stable linkers, an advance that is being evaluated for potential future ADCs. In addition, many of the company’s collaborators, including Genentech, Pfizer, Progenics and Genmab, are reporting preclinical and clinical data from multiple ADC programs utilizing Seattle Genetics’ proprietary ADC technology.

“As the leader in developing ADCs for the treatment of cancer, we are focused on both the current and future technology of this important class of therapeutics. More than half of the ADCs currently in clinical development utilize our technology, and we continue to advance additional candidates, such as SGN-CD33A and SGN-LIV1A, at a rapid pace. We are also looking at ways to enhance the next generation of ADCs, and believe that new potent cytotoxic agents such as PBD dimers, advances in antibody technology such as engineered cysteine antibodies (EC-mAbs), and highly stable linkers are part of that future,” said Jonathan Drachman, M.D., Senior Vice President, Research and Translational Medicine at Seattle Genetics. “We are driven to test these ADC advances quickly because cancer patients need new options to fight this relentless disease.”

ADCs are designed to harness the targeting ability of antibodies to deliver cell-killing agents directly to cancer cells. This approach is intended to spare non-targeted cells and thus reduce many of the toxic effects of traditional chemotherapy while enhancing antitumor activity. Seattle Genetics and its collaborators have ten data presentations at AACR that highlight the widespread evaluation of its ADC technology to potentially impact the way cancer is treated in a meaningful way.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Seattle Genetics and Genmab Collaborate
Collaboration combines Genmab’s proprietary antibodies and Seattle Genetics’ ADC technology. The new ADC program will target AXL expressed on multiple tumor types.
Friday, September 12, 2014
Seattle Genetics and Genmab Enter into New ADC Collaboration
New ADC program will target AXL expressed on multiple tumor types.
Thursday, September 11, 2014
Seattle Genetics and Oxford BioTherapeutics to Collaborate on ADCs for Cancer
Companies to combine proprietary technologies to generate novel ADC product candidates.
Friday, November 04, 2011
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos