Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Droplet Digital™ PCR Improves Detection Sensitivity of Telomerase Activity Assay

Published: Thursday, April 11, 2013
Last Updated: Thursday, April 11, 2013
Bookmark and Share
New research shows that Bio-Rad’s Droplet Digital PCR (ddPCR™) technology can dramatically improve the sensitivity, precision, and throughput of a popular assay for telomerase activity.

Researchers from the University of California, San Francisco, and Bio-Rad Laboratories, Inc. are using Bio-Rad’s ddPCR technology with intercalating dye chemistry to provide absolute quantification of telomerase activity.

Telomeres, the protective structures at the ends of chromosomes, naturally degrade with each cell division. Once they are below a critical length, the cells arrest and become senescent before dying or passing through crisis, incurring additional genomic mutations, and becoming immortalized cancer cells.

One of the mechanisms of immortality is the activation of the telomerase enzyme. This enzyme adds a specific sequence of nucleotide repeats to telomeres, thus rewinding the clock and enabling a cell to divide continuously. Researchers are investigating telomerase activity as a biomarker for cancer diagnosis and as a target for anticancer drugs. Measuring telomerase activity more sensitively may enhance our understanding of its role in oncogenesis and other cellular and physiological phenotypes.

ddPCR Technology Enhances the Telomerase Activity Assay 
Traditionally, the telomerase repeat amplification protocol (TRAP) assay measures the presence of active telomerase by measuring the activity of the enzyme on a starting DNA template, which is then amplified by PCR. For samples with abundant telomerase activity, SYBR® Green qPCR assays deliver high throughput and sufficient sensitivity. However, the most sensitive detection method still requires radioactive labeling, laborious polyacrylamide sequencing gels, and densitometry.

In the cited study, single-molecule counting of telomerase-extended templates was accomplished by partitioning the sample into droplets followed by PCR amplification and detection by fluorescence droplet reading using Bio-Rad’s ddPCR technology. The study results indicate that ddPCR is significantly more sensitive than traditional TRAP radiography and is also more amenable to high-throughput analysis.

“This new (ddPCR TRAP) telomerase activity assay demonstrates the ability to quantify telomerase enzymatic activity in droplets,” said George Karlin-Neumann, director of scientific affairs at Bio-Rad’s Digital Biology Center. “The sensitivity of ddPCR technology enables the measurement of telomerase activity in samples below the detection limit of traditional radiographic methods, while also providing a quick and facile method of measurement in cells where telomerase is more highly expressed.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,900+ scientific posters on ePosters
  • More than 4,200+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Droplet Digital PCR Enables Measurement of Potential Cancer Survival Biomarker
Study paves the way for further research into the role of TIL quantification in immunotherapy and as a cancer survival predictor.
Tuesday, December 10, 2013
Bio-Rad Describes Detailed Neuroblastoma Study Using qPCR Analysis
The study uses examples from neuroblastoma research conducted at Bio-Rad and by researchers at Ghent University, Belgium.
Monday, August 04, 2008
Bio-Rad Launches new Website for Researchers Transfecting Mammalian Cells
Bio-Rad adds ‘Gene Transfer Protocols’ to its Gene Expression Gateway Web-site, dedicated to researchers working with mammalian cells.
Friday, June 27, 2008
A Comparative RNA Quantitation Analysis is Available
Bio-Rad Laboratories, Inc. has announced the availability of a technical paper that compares the performance of Bio-Rad’s Experion™ system to other methods of RNA quantitation.
Friday, March 14, 2008
Scientific News
Advancing Synthetic Biology
Living systems rely on a dizzying variety of chemical reactions essential to development and survival. Most of these involve a specialized class of protein molecules — the enzymes.
NIH Researchers Identify Striking Genomic Signature for Cancer
Institute has identified striking signature shared by five types of cancer.
CRI Develops Innovative Approach for Identifying Lung Cancer
Institute has developed innovative approach for identifying processes that fuel tumor growth in lung cancer patients.
Counting Cancer-busting Oxygen Molecules
Researchers from the Centre for Nanoscale BioPhotonics (CNBP), an Australian Research Centre of Excellence, have shown that nanoparticles used in combination with X-rays, are a viable method for killing cancer cells deep within the living body.
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Cancer Cells Kill Off Healthy Neighbours
Cancer cells create space to grow by killing off surrounding healthy cells, according to UK researchers working with fruit flies.
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Genetic Mechanism Behind Cancer-Causing Mutations
Researchers at Indiana University has identified a genetic mechanism that is likely to drive mutations that can lead to cancer.
Future of Medicine Could be Found in a Tiny Crystal Ball
A Drexel University materials scientist has discovered a way to grow a crystal ball in a lab. Not the kind that soothsayers use to predict the future, but a microscopic version that could be used to encapsulate medication in a way that would allow it to deliver its curative payload more effectively inside the body.
"Gene Fusion" Drives Childhood Brain Cancers
Study co-led by Penn scientists highlights potential targets for future cancer therapies.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,900+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,200+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!