Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Gene Signature Can Predict Who Will Survive Chemotherapy

Published: Tuesday, April 16, 2013
Last Updated: Tuesday, April 16, 2013
Bookmark and Share
An eight gene ‘signature’ can predict length of relapse-free survival after chemotherapy, finds new research in Biomed Central’s open access journal BMC Medicine.

Researchers from Academia Sinica and the National Taiwan University College of Medicine first identified genes that were involved in cellular invasion, a property of many cancer cells, using the National Cancer Institute’s 60 human cancer cell line panel (NCI-60). Comparing the pattern of activation of each of these genes in different cell lines with how these cell lines responded to 99 different anti-cancer drugs,  helped narrow down the list of genes to just those which could potentially influence the outcome of chemotherapy.

Testing this link, Prof Ker-Chau Li, from Academia Sinica and UCLA, commented, “Our study found eight genes which were involved in invasion, and the relative activation of these genes correlated to  chemotherapy outcome, including the receptor for growth factor EGF. We also found that some invasion genes had unique patterns of expression that reflect  the differential cell  responses to each of the chemotherapy agents - five drugs (paclitaxel, docetaxel, erlotinib, everolimus and dasatinib) had the greatest effect.”

When the researchers looked at gene expression data of these eight genes from cancer cell lines they found that there was an obvious difference between cells which responded to chemotherapy and those who did not (albeit with some overlap). In clinical studies, looking at lung and breast cancer, the patients, whose gene signature put them in the low-risk group, had a longer relapse free survival than the high-risk group.

Prof Pan-Chyr Yang of National Taiwan University  added, “The discovery of prognostic biomarkers for chemotherapy patients remains critical toward improving the efficacy of cancer treatment. The eight-gene signature obtained here may help choice of treatment as part of individualized cancer therapy and our method of gene discovery may be applicable in studying other cancers.”

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
Friday, August 21, 2015
Leukaemia Drug Could Help Treat Breast Cancer
A drug currently used to treat leukaemia might also help prevent breast cancer from spreading to other parts of the body.
Friday, August 23, 2013
A Possible Blood Test for Alzheimer’s Disease
A new blood test can be used to discriminate between people with Alzheimer's disease and healthy controls.
Monday, July 29, 2013
Oxygen-Free Energy Designed to Fuel Brain Development Spurs on Growth of Cancer
The metabolic process which fuels the growth of many cancers has its origins in normal brain growth finds a new study published in BioMed Central's open access journal Cancer & Metabolism.
Wednesday, January 23, 2013
Genetic Predictor of Breast Cancer Response to Chemotherapy
Gene expression 'signatures' to measure the susceptibility of tumor cells to chemotherapy.
Friday, May 11, 2012
Cellular 'Glue' Resists Breast Cancer
New research demonstrates that the protein Perp provides a potential new target for future treatment of breast cancer.
Thursday, April 19, 2012
DIMming Cancer Growth - STAT: diindolylmethane Suppresses Ovarian Cancer
New research published in BioMed Central’s open access journal BMC Medicine has looked in detail at the action of DIM and showed that it works by blocking the activation and production of the transcription factor STAT3.
Wednesday, January 25, 2012
Relatives of Melanoma Patients Ignore their Skin Cancer Risk
New research shows that young people in ‘at risk’ group are still ignoring sun safety advice.
Thursday, December 29, 2011
Elevated Hormone Levels Add Up to Increased Breast Cancer Risk
New research found that the risk of breast cancer increased with the high levels of estrogen or testosterone hormones.
Monday, October 24, 2011
Modeling Cancer Using Ecological Principles
New research uses Tilman model of competition between invasive species to study the metastasis of prostate cells into bone.
Tuesday, October 04, 2011
Heart Disease Beats Breast Cancer as the Biggest Killer
Research shows that women with breast cancer died from other causes and that over the length of the study cardiovascular disease was the leading cause of death.
Tuesday, June 21, 2011
C-reactive Protein Levels Predict Breast Cancer Survival Rates
BioMed Central's new research shows that elevated CRP levels are predictive of a poor prognosis for breast cancer sufferers.
Friday, June 03, 2011
Coffee Reduces Breast Cancer Risk
Research shows that drinking coffee specifically reduces the risk of antiestrogen-resistant estrogen-receptor (ER)-negative breast cancer.
Wednesday, June 01, 2011
High Throughput RNAi Assay Optimization Using Adherent Cell Cytometry
Researchers from Harvard Medical School have detailed how adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays, accelerating in vitro cell assays and reducing costs.
Tuesday, May 03, 2011
Quantitative miRNA Expression Analysis Using Fluidigm Microfluidics Dynamic Arrays
An article published in the journal BMC Genomics demonstrates how the qPCR-array based microfluidic dynamic array platform can be used in conjunction with multiplexed RT reactions for miRNA gene expression profiling.
Tuesday, April 12, 2011
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos