Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

New Imaging Technology Could Reveal Cellular Secrets

Published: Friday, April 26, 2013
Last Updated: Friday, April 26, 2013
Bookmark and Share
Researchers have married two biological imaging technologies, creating a new way to learn how good cells go bad.

"Let's say you have a large population of cells," said Corey Neu, an assistant professor in Purdue University's Weldon School of Biomedical Engineering. "Just one of them might metastasize or proliferate, forming a cancerous tumor. We need to understand what it is that gives rise to that one bad cell."

Such an advance makes it possible to simultaneously study the mechanical and biochemical behavior of cells, which could provide new insights into disease processes, said biomedical engineering postdoctoral fellow Charilaos "Harris" Mousoulis.

Being able to study a cell's internal workings in fine detail would likely yield insights into the physical and biochemical responses to its environment. The technology, which combines an atomic force microscope and nuclear magnetic resonance system, could help researchers study individual cancer cells, for example, to uncover mechanisms leading up to cancer metastasis for research and diagnostics.

The prototype's capabilities were demonstrated by taking nuclear magnetic resonance spectra of hydrogen atoms in water. Findings represent a proof of concept of the technology and are detailed in a research paper that appeared online April 11 in the journal Applied Physics Letters. The paper was co-authored by Mousoulis; research scientist Teimour Maleki; Babak Ziaie, a professor of electrical and computer engineering; and Neu.

"You could detect many different types of chemical elements, but in this case hydrogen is nice to detect because it's abundant," Neu said. "You could detect carbon, nitrogen and other elements to get more detailed information about specific biochemistry inside a cell."

An atomic force microscope (AFM) uses a tiny vibrating probe called a cantilever to yield information about materials and surfaces on the scale of nanometers, or billionths of a meter. Because the instrument enables scientists to "see" objects far smaller than possible using light microscopes, it could be ideal for studying molecules, cell membranes and other biological structures.

However, the AFM does not provide information about the biological and chemical properties of cells. So the researchers fabricated a metal microcoil on the AFM cantilever. An electrical current is passed though the coil, causing it to exchange electromagnetic radiation with protons in molecules within the cell and inducing another current in the coil, which is detected.

The Purdue researchers perform "mechanobiology" studies to learn how forces exerted on cells influence their behavior. In work focusing on osteoarthritis, their research includes the study of cartilage cells from the knee to learn how they interact with the complex matrix of structures and biochemistry between cells.

Future research might include studying cells in "microfluidic chambers" to test how they respond to specific drugs and environmental changes.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Remote-Controlled Drug Delivery
A team of researchers has created a new implantable drug-delivery system using nanowires that can be wirelessly controlled.
Thursday, June 25, 2015
Mass Spectrometry Tool Helps Guide Brain Cancer Surgery
A tool to help brain surgeons test and more precisely remove cancerous tissue was successfully used during surgery, according to a Purdue University and Brigham and Women's Hospital study.
Wednesday, July 02, 2014
Cell-Detection System Promising for Medical Research, Diagnostics
Researchers are developing a system that uses tiny magnetic beads to quickly detect rare types of cancer cells circulating in a patient's blood.
Thursday, October 03, 2013
Purdue Innovation could Improve Personalized Cancer-Care Outcomes
An innovation could improve therapy selection for personalized cancer care by helping specialists better identify the most effective drug treatment combinations for patients.
Friday, August 16, 2013
Nanoparticles, 'pH Phoresis' Could Improve Cancer Drug Delivery
Researchers have developed a concept to potentially improve delivery of drugs for cancer treatment using nanoparticles.
Wednesday, July 10, 2013
MolecularHUB Gives Scientific Information on Fast-moving Diseases
A scientific gateway website that will provide molecular and genetic information on infectious and emerging diseases has been released by Purdue University.
Thursday, October 25, 2012
Body Heat, Fermentation Drive New Drug-Delivery 'Micropump'
Researchers have created a new type of miniature pump activated by body heat that could be used in drug-delivery patches powered by fermentation.
Friday, September 14, 2012
Gene's function May Give New Target for Cancer Drugs
Scientists have determined that a gene long known to be involved in cancer cell formation and chemotherapy resistance is key to proper RNA creation, and could one day lead to new therapies and drug targets.
Thursday, September 13, 2012
Imaging Tool Tracks Carbon Nanotubes in Living Cells
Researchers have demonstrated a new imaging tool for tracking structures called carbon nanotubes in living cells and the bloodstream, which could aid efforts to perfect their use in biomedical research and clinical medicine.
Thursday, December 08, 2011
Kylin Therapeutics Licenses an RNAi Delivery Technology from Purdue University
Kylin has signed exclusive license agreement that include more than 12 patent applications covering pRNA with Purdue University.
Monday, July 09, 2007
Purdue Scientists Treat Cancer with RNA Nanotechnology
Microscopic particles possess both the right size to gain entry into cells and also the right structure to carry other therapeutic strands of RNA inside with them.
Tuesday, September 20, 2005
Scientific News
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Biologists Find Unexpected Role for Amyloid-Forming Protein
Yeast protein could offer clues to how Alzheimer’s plaques form in the brain.
Revolutionary Gene-editing Technique to Stop AIDS Virus in Its Tracks
UNLV personalized medicine researchers seeking patent on potential HIV cure. Their technique uses a plant protein widely used in agriculture industry.
Viruses Join Fight Against Harmful Bacteria
Engineered viruses could combat human disease and improve food safety.
Tracking Changes in DNA Methylation In Real Time At Single-Cell Resolution
Whitehead Institute researchers have developed a methodology to monitor changes in DNA methylation over time in individual cells.
Virus Re-Engineered to Deliver Targeted Therapies
Researchers stripped a virus of its infectious machinery and turned its benign core into a delivery vehicle that can target sick cells while leaving healthy tissue alone.
Exposure to Pesticides In Childhood Linked to Cancer
Young children who are exposed to insecticides inside their homes may be slightly more at risk for developing leukemia or lymphoma during childhood, according to a meta-analysis by Harvard T.H. Chan School of Public Health researchers.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos