Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Suppressing Protein may Stem Alzheimer's Disease Process

Published: Friday, April 26, 2013
Last Updated: Friday, April 26, 2013
Bookmark and Share
Runaway regulator clogs removal of toxic debris – NIH funded study.

Scientists funded by the National Institutes of Health have discovered a potential strategy for developing treatments to stem the disease process in Alzheimer’s disease. It’s based on unclogging removal of toxic debris that accumulates in patients’ brains, by blocking activity of a little-known regulator protein called CD33.

“Too much CD33 appears to promote late-onset Alzheimer’s by preventing support cells from clearing out toxic plaques, key risk factors for the disease,” explained Rudolph Tanzi, Ph.D.  , of Massachusetts General Hospital and Harvard University, a grantee of the NIH’s National Institute of Mental Health (NIMH) and National Institute on Aging (NIA). “Future medications that impede CD33 activity in the brain might help prevent or treat the disorder.”

Tanzi and colleagues report on their findings April 25, 2013 in the journal Neuron.

Variation in the CD33 gene turned up as one of four prime suspects in the largest genome-wide dragnet of Alzheimer’s-affected families, reported by Tanzi and colleagues in 2008. The gene was known to make a protein that regulates the immune system, but its function in the brain remained elusive. To discover how it might contribute to Alzheimer’s, the researchers brought to bear human genetics, biochemistry and human brain tissue, mouse and cell-based experiments.

They found over-expression of CD33 in support cells, called microglia, in postmortem brains from patients who had late-onset Alzheimer’s disease, the most common form of the illness. The more CD33 protein on the cell surface of microglia, the more beta-amyloid proteins and plaques — damaging debris — had accumulated in their brains. Moreover, the researchers discovered that brains of people who inherited a version of the CD33 gene that protected them from Alzheimer’s conspicuously showed reduced amounts of CD33 on the surface of microglia and less beta-amyloid.

Brain levels of beta-amyloid and plaques were also markedly reduced in mice engineered to under-express or lack CD33. Microglia cells in these animals were more efficient at clearing out the debris, which the researchers traced to levels of CD33 on the cell surface.

Evidence also suggested that CD33 works in league with another Alzheimer’s risk gene in microglia to regulate inflammation in the brain.

The study results — and those of a recent rat study that replicated many features of the human illness — add support to the prevailing theory that accumulation of beta-amyloid plaques are hallmarks of Alzheimer’s pathology. They come at a time of ferment in the field, spurred by other recent contradictory evidence  suggesting that these presumed culprits might instead play a protective role.

Since increased CD33 activity in microglia impaired beta-amyloid clearance in late onset Alzheimer’s, Tanzi and colleagues are now searching for agents that can cross the blood-brain barrier and block it.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Lipid Nanoparticle Therapeutic Treats Ebola in Monkeys
A newly designed agent was effective in treating monkeys infected with a deadly Ebola virus strain.
Wednesday, May 06, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
NIH Study Finds Genetic Link for Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Friday, April 17, 2015
Novel Approach Gives Insights Into Tumor Development
Scientists used a powerful new technique to turn off all the genes in mouse lung cancer cells and test how they affect tumor growth and metastasis.
Tuesday, March 24, 2015
Strengthening the Immune System’s Fight Against Brain Cancer
NIH-funded research suggests novel way to improve vaccine efficacy in brain tumors.
Friday, March 20, 2015
Range of Molecular Alterations in Head and Neck Cancers Uncovered
TCGA tumor genome sequencing analyses offer new insights into the effects of HPV and smoking, and find genomic similarities with other cancers.
Thursday, January 29, 2015
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos