Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Study Establishes Basis for Genomic Classification of Endometrial Cancers

Published: Thursday, May 02, 2013
Last Updated: Thursday, May 02, 2013
Bookmark and Share
Proper categorization is important for choosing the best treatment.

A comprehensive genomic analysis of nearly 400 endometrial tumors suggests that certain molecular characteristics – such as the frequency of mutations -- could complement current pathology methods and help distinguish between principal types of endometrial tumors, as well as provide insights into potential treatment strategies.  In addition, the study, led by investigators in The Cancer Genome Atlas (TCGA) Research Network, revealed four novel tumor subtypes, while also identifying genomic similarities between endometrial and other types of cancers, including breast, ovarian, and colorectal cancers.

These findings represent the most comprehensive characterization of the molecular alterations in endometrial cancers available to date. They were published May 2, 2013, in the journal Nature. TCGA is funded and managed by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both part of the National Institutes of Health.

“With this latest study in a series of 20 planned TCGA tumor type characterizations, more genomic similarities are emerging between disparate tumor types,” said NIH Director Francis S. Collins, M.D., Ph.D.  “Teasing out heretofore unknown genomic markers or mutations in various cancers is again proving the value of TCGA.”

Clinically, endometrial cancers fall into two categories: endometrioid (type I) and serous (type II) tumors. Type I is correlated with excess estrogen, obesity, and a favorable prognosis, while type II is more common in older women and generally has a less favorable outcome. Type I tumors are often treated with radiation therapy, which helps stop or slow cancer growth, given in addition to or after the primary treatment. Type II tumors are generally treated with chemotherapy, in which drugs are used to kill the cancer cells or stop them from growing.

Distinguishing between different types of endometrial cancers is currently based on histology, an examination of a thin slice of tissue under a microscope. But categorizing endometrial cancer tissues is often difficult, and specialists frequently disagree on the classification of individual cases.

In this study, investigators showed that approximately 25 percent of tumors that pathologists classified as high-grade endometrioid showed frequent mutations in TP53, a tumor suppressor gene, as well as extensive copy number alterations, a term for when a cell has too many or too few copies of a genomic segment. Both are key molecular characteristics associated with serous tumors, along with a small number of DNA methylation changes, which are additions of a basic chemical unit to pieces of DNA. Most endometrioid tumors, by contrast, have few copy number alterations or mutations in TP53, though there are  frequent mutations in other well known cancer-associated genes, including PTEN, another tumor suppressor gene, and KRAS, a gene involved in regulating cell division.

These data suggest that some high grade endometrioid tumors have developed a strikingly similar pattern of alterations to serous tumors, and may benefit from a similar course of treatment.

“This study highlights the fact that some tumors with the same characterization by pathologists may have very different molecular features. That’s where these findings will be directly implemented in additional research, and also in the context of clinical trials,” said Douglas A. Levine, M.D., head of the Gynecology Research Laboratory at Memorial Sloan-Kettering Cancer Center, New York, and a co-leader in the study.

According to the authors, the new findings provide a roadmap for future clinical trials for endometrial cancer.  “Each tumor subtype might warrant dedicated clinical trials because of the marked genomic differences between them that are indicative of different drivers of cancer,” said study co-leader Elaine Mardis, Ph.D., co-director of the Genome Institute at Washington University School of Medicine, St. Louis.  “Developing therapies for each subtype independent of the other may improve outcomes, as has been shown in breast cancer.”

Investigators also found genomic similarities between endometrial cancers and other tumor types.  Previous TCGA research showed that a form of ovarian cancer (high-grade serous ovarian carcinoma) and a subtype of breast cancer (basal-like breast cancer) share many genomic features. In this study, the scientists found that endometrial serous carcinoma also has some of these same genomic characteristics. The cancers share a high frequency of mutations in TP53 (between 84 and 96 percent) and a low frequency in PTEN, with only 1 to 2 percent mutated. Surprisingly, the researchers also found many shared characteristics between endometrioid tumors and colorectal tumors. Both cancer types demonstrate a high frequency of microsatellite instability, where the repair mechanism for DNA is broken, and mutations in POLE, a gene responsible for producing a protein involved in DNA replication and repair. These genomic changes led to high mutation rates in both tumor types.

“TCGA’s multidimensional approach to collecting genomic data, including clinical and pathology information, have made these findings possible,” said Harold Varmus, M.D., NCI director. “Without the integrated characterization of so many tumor samples, correlations between histology and genomic data may not have been observed or potential clinical outcomes identified.”

With a complete analysis of the study’s findings, investigators have identified four novel genomic-based subtypes of endometrial cancer, which may set the stage for new diagnostic and treatment approaches. Each of the four genomic subtypes clustered together and was named for one of its notable characteristics:

-- The POLE ultramutated group was named for its unusually high mutation rates and hotspot mutations (sequences highly susceptible to mutation) in the POLE gene.
-- The hypermutated microsatellite instability group exhibited a high mutation rate, as well as few copy number alterations, but did not carry mutations in the POLE gene.
-- The copy number low group showed the greatest microsatellite stability but a high frequency of mutations in CTNNB1, a gene critical for maintaining the linings of organs, such as the endometrium.
-- The copy number high subtype was composed of mostly serous tumors, but included some endometrioid samples. This subtype displayed copy number alterations and a mutation landscape that was characteristic of serous tumors.

Endometrial cancer is the fourth most commonly diagnosed cancer among women in the United States. NCI estimates that close to 50,000 women will be diagnosed with endometrial cancer in 2013, with more than an estimated 8,000 deaths from the disease.

For a majority of patients diagnosed with aggressive, high grade tumors with metastases, the five-year survival rate is about 16 percent, though chemotherapy has been associated with an improvement in survival, and new targeted agents are being tested.

“Finding genomic similarities among types of breast, ovarian, endometrial and colorectal tumors once again reveals that cancer, although very complex, may have themes extending beyond tissue type that can be exploited for therapeutic benefit,” said Eric D. Green, M.D., Ph.D., NHGRI director. “These similar genomic features demonstrate hitherto unknown commonalities among these cancers.

To date, the TCGA Research Network has generated data and published analyses on glioblastoma multiforme, ovarian serous adenocarcinoma, colorectal adenocarcinoma, lung squamous cell carcinoma and invasive breast cancer. Data generated by TCGA are freely available at the TCGA Data Portal and CGHub.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Submissions Open for the Cancer Moonshot Program
NCI opens online platform to submit ideas about research for Cancer Moonshot.
Tuesday, April 19, 2016
Researchers Find Link Between Death of Tumor-Support Cells and Cancer Metastasis
Researchers at NIH have found that the lifespan of supportive cells in a tumor may control the spread of cancer.
Tuesday, February 23, 2016
Cancer Drug Target Visualized at Atomic Resolution
New study using cryo-electron microscopy shows how potential drugs could inhibit cancer.
Thursday, February 04, 2016
Scientists Develop Genetic Blueprint of Inner Ear Cell Development
Two studies in mice use new technique to provide insight into cell development critical for hearing, balance.
Saturday, October 17, 2015
NIH Breast Cancer Research to Focus On Prevention
A new phase of the Breast Cancer and the Environment Research Program (BCERP), focused on prevention, is being launched at the National Institutes of Health.
Friday, October 09, 2015
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Tuesday, October 06, 2015
Cellular Factors that Shape the 3D Landscape of the Genome Identified
Researchers have identified 50 cellular factors required for the proper 3D positioning of genes by using novel large-scale imaging technology.
Tuesday, August 18, 2015
Tell-tale Biomarker Detects Early Breast Cancer in NIH-funded Study
The study published online in the issue of Nature Communications.
Thursday, August 13, 2015
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
Tuesday, July 21, 2015
Potential Therapeutic for Blinding Eye Disease
NIH research points to microglia as potential therapeutic target in retinitis pigmentosa.
Thursday, July 02, 2015
NCI-MATCH Trial will Link Targeted Cancer Drugs to Gene Abnormalities
Precision medicine trial will open to patient enrollment in July.
Tuesday, June 09, 2015
Linking Targeted Cancer Drugs to Gene Abnormalities
Investigators at the NIH have announced a series of clinical trials that will study drugs or drug combinations that target specific genetic mutations.
Wednesday, June 03, 2015
Lipid Nanoparticle Therapeutic Treats Ebola in Monkeys
A newly designed agent was effective in treating monkeys infected with a deadly Ebola virus strain.
Wednesday, May 06, 2015
Possible Treatment for Lethal Pediatric Brain Cancer
NIH-funded preclinical study suggests epigenetic drugs may be used to treat leading cause of pediatric brain cancer death.
Tuesday, May 05, 2015
NIH Study Finds Genetic Link for Rare Intestinal Cancer
Researchers recommend screening for people with family history.
Friday, April 17, 2015
Scientific News
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Altered Metabolism of Four Compounds Drives Glioblastoma Growth
Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!