Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Duke Researchers Describe How Breast Cancer Cells Acquire Drug Resistance

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
A seven-year quest has revealed a previously unknown molecular network that regulates cell death.

The discovery provides new avenues to overcome drug resistance, according to researchers at Duke Cancer Institute.

“We’ve revealed multiple new signaling pathways that regulate cell death,” said Sally Kornbluth, PhD, vice dean of Basic Science and professor of Pharmacology and Cancer Biology at Duke University School of Medicine. “And we’ve shown, at least in one disease, these signaling pathways can go awry in drug resistance. It also suggests you could manipulate these other pathways to overcome drug resistance.”

The researchers -- co-directed by Kornbluth and Neil Spector, M.D., associate professor of medicine at Duke -- identified a protein that effectively shuts down the signals that tell a cell to die, enabling cancer cells to keep growing. That protein, MDM2, is already generating intense interest in the cancer research community because it is a master regulator of the tumor suppressor protein called p53.
The Duke research team, with assistance from collaborators at the University of Michigan, identified a new role for MDM2 in activating cell death pathways independent of its role in regulating p53, a known initiator of cell death. More than half of all human tumors contain a mutation or deletion of the gene that controls p53.

The researchers began by studying four different types of breast cancer cells that were able to keep growing despite treatment with lapatinib, a powerful drug that targets two growth pathways commonly disrupted in breast cancer, HER2 and epidermal growth factor receptor. They found that in each case, the drug resistance could be traced to the presence of high levels of MDM2, which was found to be blocking cell death signals independent of whether p53 was activated.

“These results suggest that inhibition of MDM2, at least in the setting of breast cancer, might overcome lapatinib resistance even if p53 is mutated,” Kornbluth said.

Spector and his colleagues first reported the activation of estrogen receptor signaling, which led to FDA-approval of lapatinib in combination with letrozole as a first-line treatment for advanced-stage HER2-positive and estrogen receptor-positive breast cancers. Researchers at Duke, including the Spector laboratory, and other investigators have worked to identify various mechanisms of lapatinib resistance.

“The importance of this new MDM2 finding is that it may underlie these proposed mechanisms of resistance and therefore provide a more effective treatment,” Spector said.

The findings also suggest that other drugs targeting tyrosine kinases may be vulnerable to resistance using this same mechanism. Gefitinib is a targeted cancer therapy that blocks a tyrosine kinase enzyme to treat non-small cell lung cancers caused by mutations in the epidermal growth factor receptor.

“This study raises the possibility that resistance to other tyrosine kinase inhibitor drugs, such as gefitinib-resistant lung cancer, could involve MDM2,” Kornbluth said. “We are now going to investigate whether MDM2 has anything to do with gefitinib resistance.”

The lead author of the paper, Manabu Kurokawa, is now an assistant professor at Dartmouth University. Other authors of the paper include Jiyeon Kim, Joseph Geradts, Kenkyo Mastuura, Wenle Xia, Thomas J. Ribar, Ricardo Henao, Neil L. Spector, Mark W. Dewhirst, and Joseph E. Lucas of Duke; Wun-Jae Kim of Chungbuk National University Hospital; and Shaomeng Wang, Liu Liu, and Xu Ran of the University of Michigan.

The study was funded in part by the National Institutes of Health (R01 CA102707) and the National Cancer Institute (K99 CA140948). The Susan G. Komen for the Cure foundation has provided research support into lapatinib resistance. A full list of funders is provided in the published manuscript.

The authors have filed a patent application based on this work. Shaomeng Wang owns stocks and is a consultant for Ascenta, and is a co-inventor on MI-219 and related MDM2 inhibitors. Ascenta has licensed MI-219 and related MDM2 inhibitors from the University of Michigan to Sanofi for clinical development.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Utilization of Circulating Biomarkers for Minimally Invasive Diagnostics Development
Market Trends in Biofluid-based Liquid Biopsies: Deploying Circulating Biomarkers in the Clinic. Enal Razvi, Ph.D., Managing Director, Select Biosciences, Inc.
Self-Assembling, Biomimetic Membranes May Aid Water Filtration
A synthetic membrane that self assembles and is easily produced may lead to better gas separation, water purification, drug delivery and DNA recognition, according to an international team of researchers.
Error Correction Mechanism in Cell Division
Cell biologists have reported an advance in understanding the workings of an error correction mechanism that helps cells detect and correct mistakes in cell division early enough to prevent chromosome mis-segregation and aneuploidy, that is, having too many or too few chromosomes.
Researchers Resurrect Ancient Viruses
Researchers at Massachusetts Eye and Ear and Schepens Eye Research Institute have reconstructed an ancient virus that is highly effective at delivering gene therapies to the liver, muscle, and retina.
Cell Aging Slowed by Putting Brakes on Noisy Transcription
Experiments in yeast hint at ways to extend life of some human cells.
Crucial for Stem Cell Survival Protein Identified Using Editing Tool CRISPR
A team of University of Wisconsin-Madison engineers has identified a protein that is integral to the survival and self-renewal processes of human pluripotent stem cells (hPSC).
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!