Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

microRNA Cooperation Mutes Breast Cancer Oncogenes

Published: Friday, May 10, 2013
Last Updated: Friday, May 10, 2013
Bookmark and Share
Turning up a few microRNAs a little may offer as much anti-breast-cancer activity as turning up one microRNA a lot – and without the unwanted side effects.

It’s a bit like the classic thought experiment known as the “tumor problem” formulated by Karl Dunker in 1945 and used frequently in the problem-solving literature: Imagine a person suffers from a malignant tumor in the center of her body. Radiation strong enough to kill the tumor kills any healthy tissue through which it passes. Without operating or killing healthy tissue, how can a doctor use radiation to kill the tumor?

The answer is to target the tumor from many angles – many weak rays of radiation pass harmlessly through healthy tissue, but their combined power at the point of the tumor is enough to kill it.

In the present study, CU Cancer Center investigators used “weak” induction of multiple microRNAs that combined from many angles to regulate the known breast cancer oncogenes erbB2/erbB3 (the “tumor”) without regulating non-target genes (the “healthy tissue”).

“Imagine you have a microRNA that regulates genes A and B. Then you have another microRNA that regulates genes B and C. You amplify each microRNA to a degree that doesn’t effect gene A or C, but their combined effect regulates gene B,” says Bolin Liu, MD, assistant professor in the Department of Pathology at the University of Colorado School of Medicine.

microRNA is an attractive target in cancer therapy – more microRNA can lead to less gene expression, turning down or off the oncogenes that cause cancer. However, to get the desired effect on gene expression frequently requires enhancing microRNA expression 100- or 1,000-fold (or more). And the induced microRNA likely has other genetic targets – it will turn down other genes as well as the oncogene, sometimes with unfortunate consequences.

“The current study showed that two microRNAs enhanced only 3-to-6 times their natural expression could cooperate to regulate an oncogene that had previously only been affected by a microRNA enhanced by many, many times this amount,” Liu says.

Specifically, the group’s work shows that no one alone, but any two of the three microRNAs that regulate erbB2/erbB3 expression can affect the levels of proteins produced by the genes. These are miR-125a, miR-15b, and miR-205, which act in concert to regulate the expression of erbB2/erbB3, which are cancer-causing products of the oncogenes.

But in general, the group’s novel technique could have implications far past erbB2/erbB3, allowing researchers and eventually doctors to mute the genes they want to mute without also dampening the expression of genes regulated by only one or only the other microRNA partner.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Epigenomic Abnormalities Predict Patient Survival in Non-Hodgkins Lymphoma
University of Colorado Cancer Center looks into how epigenetics could be used to control cancer.
Wednesday, January 16, 2013
Scientific News
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
UTSW Creates Nanoparticles That Target Lung Cancer Cells
Researchers at UTSW have developed a synthetic polymers that could deliver nucleic acid drugs while possessing enough structural diversity to discover cancer cell-specific nanoparticles.
Delivering Beneficial Bacteria
Method that transports microbes through the stomach to the intestine may benefit human health.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!