Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Studies Generate ‘Comprehensive’ List of Genes Required to Defend Sex Cells from Transposons

Published: Monday, May 13, 2013
Last Updated: Monday, May 13, 2013
Bookmark and Share
The piRNA pathway protects eggs and sperm from ‘jumping genes’ that can cause developmental defects, sterility.

Two teams of investigators led by Professor Gregory Hannon of Cold Spring Harbor Laboratory (CSHL) today publish studies revealing many previously unknown components of an innate system that defends sex cells – the carriers of inheritance across generations – from the ravages of transposable genetic elements.

When activated, these troublesome segments of DNA, also called jumping genes or transposons, can copy and insert themselves at random spots across the chromosomes.  In sperm and egg cells the proliferation of transposons can be particularly devastating, causing severe developmental impairments in offspring as well as sterility. Over the eons of evolution, complex organisms have developed means of defending their germline genomes against transposons, principally via a series of mechanisms that scientists call the piRNA pathway.

In animals, this pathway involves a family of proteins – called Piwi proteins – that combine with a variety of small RNA molecules called Piwi-interacting RNAs, or piRNAs. Since the discovery of piRNAs in 2006, scientists have been trying to understand how they are created, and how they do the essential job of repressing transposons – which are plentiful although usually inactive throughout the genomes of nearly every species.

Some important players in the piRNA pathway are known, but the majority have remained mysterious. “That’s why the two new studies from our lab are important,” says Hannon, who is also an Investigator of the Howard Hughes Medical Institute.  “We’ve identified dozens of genes essential for proper function of the piRNA pathway, and have looked at some of them in detail.” The work advances knowledge of how the pathway works, and provides others studying it a basis for fleshing out the mechanism in its entirety.

“It’s a major step toward our goal of obtaining the blueprints for reconstructing a fully operational piRNA transposon-silencing machinery in the lab,” according to Felix Muerdter, a Ph.D. candidate, who joined three other scientists in the Hannon lab -- Drs. Benjamin Czech, Jonathan Preall, and Paloma Guzzardo – in conducting the experiments and co-authoring the new papers.

To be able to assemble the machinery active in repressing transposons will be to understand in unprecedented detail how our cells, more broadly, selectively detect and silence genes. This knowledge promises to play a role in finding new ways to treat complex diseases involving gene dysfunction, ranging from cancer to schizophrenia.

The two Hannon teams performed their experiments in fruit flies, which possess all of the fundamental elements of germline defense that humans do, owing to the phenomenon that biologists call sequence conservation.  It is nature’s way of preserving life’s most essential mechanisms across species.

Two teams, different cell types

The two Hannon lab teams used the same meticulous means of uncovering new piRNA pathway components, albeit in different kinds of cells.  Czech, Preall and their group worked with female germ cells; Muerdter and Guzzardo focused on follicle cells, which are found inside the female egg chamber but are derived from somatic cells – the cell type that comprises all of an organism’s non-sex cells.

Both groups performed RNA interference (RNAi) screens against large numbers of genes in the cell types they studied.  These screens use small RNAs to “knock down” the activity of specific genes. Czech and Preall’s group knocked down all 8000 genes expressed in the fly ovary, one at a time. Muerdter and Guzzardo knocked down all 13,900 genes in the fly genome in similar fashion. The purpose of these experiments was to see what happened to transposon levels when single genes were no longer functional.

In both groups, the screens led to the identification of dozens of genes whose absence was shown to impair transposon repression. Both groups later selected one or two genes in their screens whose knock-down had the most potent impact on transposon proliferation. For Muerdter and Guzzardo, repression of a gene they named asterix caused levels of a transposon called gypsy to soar.  But how?

How gypsy is repressed

When gypsy DNA is expressed, it begins to generate an RNA “message,” a preliminary step in the transposon proliferation process. When the asterix gene was knocked down, this is precisely what happened.  “Normally, the Piwi protein, forming a complex with a small RNA, can recognize a sequence on this RNA message,” Guzzardo explains.  “When the piRNA finds the sequence, it attaches and the process of transcription stops.”

The new work makes clear why: attachment of the piRNA to the gypsy message causes histones – proteins that pack gypsy DNA – to take on chemical modifications (called H3K9 trimethylation marks) that tag it as “silent.” The DNA cannot be accessed by the gene-expression machinery; gypsy is thus kept in a dormant state.

Without asterix, the tag that renders gypsy silent is absent, and the gypsy gene thus becomes accessible to the machinery in the nucleus that starts to transcribe it.  The transposon can now proliferate.

Czech and Preall, doing similar work exclusively in the ovary, found some of the same genes to be active in repressing transposons in those cells, thus making clear that they are components of what can now be called a “core piRNA pathway.”  In the fly ovary, many more transposons – 80 to 100 – can potentially be activated than in follicle and other somatic cells, in which the corresponding number is around 20 to 30.  For this reason, piRNA mechanisms in the female germline cells are more elaborate, and involve more genes and probably more accessory proteins in the transposon repression process, according to Czech.

“Our screens have identified a set of genes involved in transposon suppression in the female ovary of the fly,” Czech says. “We’re excited to have generated what appears to be a comprehensive list of core components of the piRNA pathway, and hope that this spurs further discovery in other labs.  Our next job is to distinguish members of the pathway involved in generating piRNAs from those we call ‘effectors,’ and ultimately bring to light the molecular mechanisms underlying piRNA biogenesis and effector functions.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Tumor Microenvironment Impacts Cancer Subtype Progression
Scientists report that two different mouse models of breast cancer progressed differently based on characteristics of the tumor microenvironment, which is the area of tissue in which the tumor is embedded.
Friday, May 29, 2015
Using CRISPR, Biologists Find a Way to Comprehensively Identify Anti-Cancer Drug Targets
Scientists at CSHL publish CRISPR gene-editing technology in Nature Biotechnology.
Wednesday, May 13, 2015
3-D Culture System for Pancreatic Cancer has Potential to Change Therapeutic Approaches
Organoid technology with human tissue provides a model for full progression of the disease.
Tuesday, January 06, 2015
CSHL Team Finds a Way to Make shRNA Gene Knockdown More Effective
A powerful algorithm that improves the effectiveness of an important research technology.
Thursday, December 11, 2014
CSHL Study Uncovers a New Exception to a Decades-Old Rule about RNA Splicing
Discovery alters prevailing view of splicing regulation and has implications for splicing mutations associated with disease.
Thursday, May 24, 2012
CSHL Team Solves a Protein Complex’s Molecular Structure to Explain Role in Gene Silencing
Scientists from Cold Spring Harbor Laboratory and their collaborators at St. Jude’s Research Hospital have discovered new details of how various domains of the protein complex contribute to heterochromatin assembly and gene silencing.
Thursday, December 01, 2011
CSHL Team Determines How Precursors of Gene-Regulating Small RNAs are Sorted by Cellular Machinery
The rules determining how a duplex is processed and sorted are discussed in a paper the team published recently in Molecular Cell.
Monday, January 04, 2010
CSHL Scientists Discover How “Companion” Cells to Sperm Protect Them from Genetic Damage
Small RNAs generated in companion cells enter neighboring sperm nuclei and inactivate harmful DNA.
Monday, February 09, 2009
CSHL Researchers Map Changing Epigenetic Modifications that Enable Transposons to Run Amok
A shift in the pattern of small RNAs occurs in continuously dividing cells as their genomes become epigenetically reprogrammed.
Friday, December 12, 2008
CSHL Scientists Discover a new Way in which Epigenetic Information is Inherited
A team of scientists discovered that class of small RNAs inherited from the mother determines offspring’s fertility trait.
Monday, December 08, 2008
RNA-based Methods for Developmental Studies are Featured in Cold Spring Harbor Protocols
This month’s issue of Cold Spring Harbor Protocols highlights two methods to understand developmental processes in plants and flies.
Monday, February 04, 2008
Scientific News
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!