Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Researchers Unearth New Clues About How Prostate Cancer Evolved

Published: Thursday, May 16, 2013
Last Updated: Thursday, May 16, 2013
Bookmark and Share
With the help of a computational model, Broad researchers were able to reconstruct the genomes of prostate cancer cells.

Imagine you’re visiting the Acropolis. You tour the ruins, taking snapshots as you go. Later, at home, you tell your family and friends about your visit and someone, noticing the building’s advanced deterioration, asks: well, how did it get that way? Now, say you knew nothing about the Acropolis, and could only rely on your photos and memory to describe the place. What would you say? Without the rich archeological history of the Acropolis, you’d be missing a huge part of the story.

Now imagine a cancer cell as a similar kind of ruin. Over time mutations accumulate, pushing the cell further and further from its original shape and function, eventually overwhelming its ability to control growth. When scientists sequence a cancer genome, the resulting data is essentially a snapshot of the tumor and its mutations at the time it was sampled. But what stories would emerge if we knew the order in which those mutations occurred?

In the case of prostate cancer — the second most lethal cancer in American men — research has demonstrated that structural genomic alterations, such as broken and rearranged chromosomes, are key to tumor development and progression. With no evidence to suggest a chronology for these breaks and repairs, researchers generally assumed that they accumulated gradually over time, often as a result of cell division. But new research is suggesting the deterioration isn’t gradual at all.

For the first time, a team of scientists from the Broad, Dana-Farber Cancer Institute, and Weill Cornell Medical Center has revealed the “cellular archeology” of prostate cancer cells. Using a computational model, the team was able to track how mutations accumulated in the genomes of 55 prostate cancer tumors. The results of the study, recently published in Cell, revealed that mutations often occur in abrupt, interconnected bursts, resulting in large-scale rearrangement of DNA.

“We’ve known for a long time that the rearrangement of certain chromosomes is key to the development of prostate cancer and we suspected they were the result of some very complex DNA-damaging events,” says Sylvan Baca, the study’s first author and cellular Indiana Jones. As a researcher in Broad senior associate member Levi Garraway’s lab and part of the Broad/Dana-Farber/Weill Cornell team, Baca had observed how the genomes of prostate cancer cells appeared as if they’d been taken apart and put back together the wrong way. In an attempt to fill in the gaps in the story, Baca developed ChainFinder — a modeling algorithm that was able to reconstruct the shattered genomes and determine the chronology of the alterations.

“Interestingly, our findings indicate that many of these rearrangements arise in a highly interdependent fashion, and may often occur together within a single cell,” said Baca, who along with the other members of the team, dubbed these damaging events “chromoplexy” from the Greek word to interweave or integrate. Similar to the idea of punctuated evolution in the population sciences — which suggests that that major genetic changes can happen to select populations in a relatively small window of time — chromoplexy indicates that sets of mutations may originate together, drastically altering cells.

“While we can’t yet say much about the timing of the events, or what the events are, the study suggests that just a few of these events may be enough to lead to the changes we know result in prostate cancer,” says Baca. A major goal of prostate cancer research is to identify new drug targets, as well as genetic characteristics that could distinguish aggressive forms of the disease. While researchers are currently working to further understand the initiating source of these events, Baca speculates that in the future profiling cells for chromoplexy may be a way to identify certain “linchpin” mutations in particular cancers.

The idea that periodic bursts of genetic upheaval, resulting in a cascade of changes eventually leading to tumor growth, has been hinted at in other cancers — but the identification of chromoplexy suggests this sort of genomic derangement may be far more common than previously thought.

“The complex genomic restructuring we discovered is a unique and important model of carcinogenesis which likely has relevance for other tumor types,” said Garraway, a co-senior author of the study. The team is now using ChainFinder to study other cancers known for containing complex genetic rearrangements, including lung adenocarcinoma, melanoma, and breast cancer, to see if those changes are also the result of chromoplexy.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Screen of Human Genome Reveals Set of Genes Essential for Cellular Viability
Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival and proliferation of human cell lines or cultured human cells.
Monday, October 19, 2015
GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Study Expands the Cancer Genomics Universe
The universe of cancer mutations is much bigger than previously thought, and key cancer genes are still to be discovered.
Tuesday, January 28, 2014
Predicting Cancer’s Next Move
Research offers a new approach to studying drug resistance in cancer.
Monday, November 11, 2013
Study Finds Rules for Cancer Drivers
Any number of alterations to an individual’s genetic code has the potential to make a cell malfunction and proliferate into cancer tumors.
Monday, September 30, 2013
Broad Institute and Bayer Join Forces
The Broad Institute has entered into a strategic alliance with Bayer Healthcare in the area of oncogenomics and drug discovery.
Wednesday, September 11, 2013
Bringing Out the Usual – and Unusual – Cancer Genomics Suspects
Several years ago, researchers sequencing lung cancer genomes encountered a number of red herrings.
Tuesday, June 18, 2013
Chemical Screen Points to New Line of Attack Against Neuroblastoma
In the war on neuroblastoma, the current chemical weaponry is reaching its limit.
Monday, June 10, 2013
ATARiS Informatics Platform Hits the Jackpot
ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within noisy datasets.
Wednesday, May 22, 2013
Endometrial Cancer Findings Emerge from Genome Sequencing Study
Novel tumor sub-types have been identified that could lead to better risk stratification and more individualized and targeted treatments.
Friday, May 10, 2013
Delivering on a Promise: Nanoparticles Carry siRNA to Tumours
RNA interference, a gene-silencing phenomenon discovered in the late 1990s, was hailed for its potential as a treatment in cancer and other diseases.
Friday, September 21, 2012
Scientific News
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.
How to Control Shape, Structure of DNA and RNA
Researchers have used computational modelling to shed light on precisely how charged gold nanoparticles influence the structure of DNA and RNA.
Advancing Genome Editing of Blood Stem Cells
Genome editing techniques for blood stem cells just got better, thanks to a team of researchers at USC and Sangamo BioSciences.
Gene-Edited Immune Cells Treat ‘Incurable’ Leukaemia
A new treatment that uses ‘molecular scissors’ to edit genes and create designer immune cells programmed to hunt out and kill drug resistant leukaemia has been used at Great Ormond Street Hospital (GOSH).

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos