Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Preclinical Tests Shows Agent Stops “Slippery” Proteins from Binding, Causing Ewing Sarcoma

Published: Friday, May 17, 2013
Last Updated: Friday, May 17, 2013
Bookmark and Share
Some tumors regressed to the point that cancer cells could not be detected microscopically.

Their study, which will be presented at the 2013 annual meeting of the American Society of Clinical Oncology, provides pre-clinical evidence necessary to initiate a clinical trial.

“This agent has the potential to be more effective, and considerably less toxic, than the current drugs now used to treat this rare cancer,” says the study’s lead investigator, Jeffrey Toretsky, MD, a pediatric oncologist and researcher at Georgetown Lombardi, part of Georgetown University Medical Center.

The agent, (S)-YK-4-279, was developed by Toretsky and his colleagues, including scientists in GUMC’s Center for Drug Discovery. Based on early promising studies of the compound, Toretsky established TDP Biotherapeutics, Inc. to manufacture the agent. Toretsky says TDP Biotherapeutics, Inc. is preparing a U.S. Food and Drug Administration (FDA) investigational new drug (IND) application for (S)-YK-4-279 so that a clinical trial can be initiated.

In the United States, about 500 children and young adults are diagnosed with the cancer annually, and they are treated with a combination of five different chemotherapy drugs. Between 60 to 70 percent of patients survive more than five years, but with many late effects from therapy. Few treatments lead to a cure for patients whose cancer progresses, Toretsky says.

Ewing sarcoma is caused by the exchange of DNA between two chromosomes. The resulting EWSR1-FLI1 gene produces a fusion protein, EWS-FLI1, responsible for development of the cancer. In 2006, Toretsky and his team discovered that the fusion protein binds to another protein, RNA helicase A (RHA), which is important for cancer progression.

The (S)-YK-4-279 agent they developed is considered unique because it stops the two proteins — EWS-FLI1 and RHA — from interacting. “Scientists have long thought it impossible to block protein-protein interaction because the surface of these proteins are too slippery and flexible for a drug to bind to,” Toretsky says. “Our agent challenges that conventional thinking.”

To test the agent, the researchers developed a rat model of Ewing sarcoma and figured out how to deliver a continuous drip of the drug to the animals. “We found that cancer cells need a continuous exposure at low concentrations for the drug to be of maximum effectiveness,” Toretsky says. “And this strategy works extremely well in these animal models. The drug appears to be very successful.”

Toretsky is an inventor on a patent application that has been filed by Georgetown University related to the technology described. He has an ownership interest in TDP Biotherapeutics, to which the technology has been licensed for research and development.

The FDA has granted the TDP Biotherapeutics company orphan drug status (Orphan Drug Act), which qualifies the sponsor of a product to receive tax credit and marketing incentives. The study was funded by a grant from the National Cancer Institute (RC4 CA156509) issued under the American Recovery and Reinvestment Act (R01CA138212).


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
AACR 2016: Cancer Immunotherapy and Beyond
At this year's meeting there was a palpable buzz around subjects ranging from microbiomics to the tumor microenvironment and cancer vaccines, big data to in vitro and in vivo modeling and drug delivery (to name just a few).
Turning Skin Cells into Heart, Brain Cells
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!