Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

ATARiS Informatics Platform Hits the Jackpot

Published: Wednesday, May 22, 2013
Last Updated: Wednesday, May 22, 2013
Bookmark and Share
ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within noisy datasets.

Listening to data isn’t easy. Massive amounts of data are often messy and complicated. But somewhere within the cacophony, information can harmonize and produce the sweet sound of discovery – if you have the right tools with which to hear it.

ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within datasets. The original idea for ATARiS came about a few years ago when members of Jill Mesirov’s computational biology and bioinformatics group, Bill Hahn's cancer biology group, and the Broad RNAi Platform were trying to address a common problem from the world of RNAi research. RNAi – short for RNA interference – allows researchers to “turn off” a gene or decrease that gene’s activity. Ideally, every gene in the genome would be paired with an RNAi reagent that could turn it – and only it – off. Instead, most RNAi reagents also disrupt other genes (a frustrating phenomenon known as off-target effects). Without a way to easily isolate on-target effects, the power of RNAi wanes.

RNAi is a critical tool for many projects at the Broad and beyond, including Project Achilles. This project – a joint effort between researchers at the Dana-Farber Cancer Institute and the Broad – seeks to pinpoint cancer’s most important weaknesses. To do so, researchers use RNAi to turn off genes in hundreds of cell lines. About 50,000 RNAi reagents have been used to target 11,000 of the 21,000 human genes (about five RNAi reagents for each of these genes) in order to see which genes are critical for cancer’s survival. These crucial genes could become the targets of drugs in the future.

“What we want to do is tune in on a specific target effect,” says Diane Shao, a graduate student in senior associate member Bill Hahn’s lab at the Broad Institute and Dana-Farber Cancer Institute. However, while researchers can pick out an RNAi reagent that seems particularly adept at killing cancer cells, they can’t be entirely certain which of its effects – on-target or off-target – are bringing about the desired result.

ATARiS helps cut through the noise from the multitude of variables and values. The computational method looks for patterns across multiple samples, assessing the performance of individual RNAi reagents to target specific genes. This allows researchers to determine which gene – rather than which RNAi reagent – is most of interest.

“ATARiS makes RNAi data more accessible,” says Aviad Tsherniak, a computational biologist in Jill Mesirov’s lab at the Broad and the key architect of ATARiS. “It simplifies it and standardizes it, and it makes the data compatible with other kinds methods.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Study Expands the Cancer Genomics Universe
The universe of cancer mutations is much bigger than previously thought, and key cancer genes are still to be discovered.
Tuesday, January 28, 2014
Predicting Cancer’s Next Move
Research offers a new approach to studying drug resistance in cancer.
Monday, November 11, 2013
Study Finds Rules for Cancer Drivers
Any number of alterations to an individual’s genetic code has the potential to make a cell malfunction and proliferate into cancer tumors.
Monday, September 30, 2013
Broad Institute and Bayer Join Forces
The Broad Institute has entered into a strategic alliance with Bayer Healthcare in the area of oncogenomics and drug discovery.
Wednesday, September 11, 2013
Bringing Out the Usual – and Unusual – Cancer Genomics Suspects
Several years ago, researchers sequencing lung cancer genomes encountered a number of red herrings.
Tuesday, June 18, 2013
Chemical Screen Points to New Line of Attack Against Neuroblastoma
In the war on neuroblastoma, the current chemical weaponry is reaching its limit.
Monday, June 10, 2013
Researchers Unearth New Clues About How Prostate Cancer Evolved
With the help of a computational model, Broad researchers were able to reconstruct the genomes of prostate cancer cells.
Thursday, May 16, 2013
Endometrial Cancer Findings Emerge from Genome Sequencing Study
Novel tumor sub-types have been identified that could lead to better risk stratification and more individualized and targeted treatments.
Friday, May 10, 2013
Delivering on a Promise: Nanoparticles Carry siRNA to Tumours
RNA interference, a gene-silencing phenomenon discovered in the late 1990s, was hailed for its potential as a treatment in cancer and other diseases.
Friday, September 21, 2012
New Potential Targets Discovered for Treating Squamous Cell Lung Cancers
The Cancer Genome Atlas finds important genomic alterations in second most common lung cancer type.
Monday, September 10, 2012
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!