Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Nano-Needles for Cells

Published: Friday, May 24, 2013
Last Updated: Friday, May 24, 2013
Bookmark and Share
Tiny needles can force medicine into cells, even when they resist taking it.

Physicist Pawel Sikorski and his group are making beds of nails on a miniature scale – a plate covered in nano-needles designed to puncture individual cells.

It sounds a bit painful, but none of these needles will be going directly into your body, because the test subjects are cells under the microscope. Sikorski is working to develop advanced tools for researchers trying to understand what goes on inside the body’s cells.

“These nano-needles will make medical research more efficient,” he says.

Cells gobble up medicine

One way to understand how different molecules influence cell function is to deliver the molecules directly into cells and study the effect. Traditionally, research is this field is done by first placing (printing) many different substances on a glass or other surface to study their effect on the cells of interest.

The substances might be a potential anticancer drug that works by affecting the cell’s genetic material, or a molecule that will switch off a particular gene inside the cell. The researchers then cultivate cells on top of the potential medicine. Some of the cells will absorb the medicine, and the researchers can monitor the changes in the cells caused by the different drugs. But in many cases this method does not work very well, because some of the cells don’t want to take their medicine.

“With the new method, we attach molecules of the drug being tested to the tips of the nano-needles, and then inject it the same way you would with an ordinary medical syringe,” says Sikorski.

Grey grass and smart cells

The researchers create the nano-needles in a small ceramic oven. In goes something that looks like aluminium foil with a small burnt patch on it (which is actually a wafer-thin piece of copper), and two hours later at 500 degrees, the copper reacts with oxygen in the heat, creating copper oxide.

The final product looks like grey grass under the microscope, but the grass is actually the nano-needles. The next step is to put something similar to tallow onto the needles so that they can be removed from the copper plate. Glass is glued to the bottom, so that everything is transparent. The finished product looks like a small, round bed of nails. Researchers can now put cells on top of the nano-needles, and see if test drugs can be injected into cells.

But some cells are trying to fool scientists. While some cells readily impale on the nano-needles, others encapsulate the needles and grow around them.

“We are currently working on finding the correct methods to insert the needles, to ensure that all of the cells are impaled,” says Sikorski.

Nobody else in Norway is making nano-needles like these. The NTNU researchers are also the first group in the world to develop an even, larger-size copper surface with nano-needles.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!