Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Chemical Screen Points to New Line of Attack Against Neuroblastoma

Published: Monday, June 10, 2013
Last Updated: Monday, June 10, 2013
Bookmark and Share
In the war on neuroblastoma, the current chemical weaponry is reaching its limit.

Kimberly Stegmaier, a physician-scientist who treats children with cancer, describes having reached a ceiling in terms of treating this type of tumor with classical chemotherapy drugs. Such drugs are designed to kill cancer cells, but they also destroy many healthy cells in the process. Children with high-risk neuroblastoma may receive multiple cycles of chemotherapy over a six-month period, in addition to stem-cell transplantation, radiation, surgery, and immunotherapy. But for many patients, this is still not enough: the majority of patients with high-risk neuroblastoma are not cured with current treatment regimens.

For many years, Stegmaier and her colleagues have been pursuing a new approach: instead of looking for drugs that will directly kill cancer cells, they are on the hunt for drugs that will, in simple terms, make cancer cells grow up. This approach, known as differentiation therapy, is based on the concept that cancer cells are stuck in – or have regressed to – an immature state. In this state, they multiply unchecked. By using chemical compounds to coax cancer cells to mature, or differentiate, researchers have successfully treated certain forms of cancer, such as acute promyelocytic leukemia. Several lines of evidence suggest that differentiation therapy could also be used to treat patients with high-risk neuroblastoma. But finding compounds that have this maturing effect has not been easy.

In a paper published in Chemistry & Biology, Stegmaier and her colleagues at the Broad Institute, the Dana-Farber Cancer Institute, and Boston Children’s Hospital report important progress in developing a strategy to pinpoint promising compounds. Using a new method, the team uncovered a probe compound that causes neuroblastoma cells to differentiate. Although not a drug, the compound points to a new way of targeting neuroblastoma cells.

“We know that in many ways, these cells are poised to differentiate if we could only figure out the trigger,” said Stegmaier, a Broad associate member and a member of the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center. “The hope is that differentiation therapy offers an alternative mechanism [for attacking neuroblastoma], and that the toxicity won’t be as great as with standard cytotoxins.”

Stegmaier, whose connection to the Broad dates back to her time as a postdoctoral fellow in the laboratory of Broad core member Todd Golub, teamed up with the Broad’s Therapeutics Platform to search for compounds of interest. While a postdoc, Stegmaier had developed a gene expression profile, or signature, of differentiated neuroblastoma cells. This unique signature of active genes would give the researchers a signal they could look for to identify the most promising compounds.

Rather than screening all of the chemical compounds in the Therapeutics Platform’s extensive collection, the team decided to use a subset of molecules with a particular focus. These compounds – built at the Broad through a process known as diversity-oriented synthesis (DOS) – were specifically developed to focus on genome-organizing complexes known as chromatin.

“There were a couple of things that were intriguing right off of the bat with that data,” said Jeremy Duvall, manager of DOS chemistry in the Therapeutics Platform. The results of the screen pointed to a DOS compound known simply as BRD8430, could induce neuroblastoma cells to mature, while closely related structures could not. “There seemed to be a preferred stereochemical relationship that affected its activity. That was exciting: that’s what we look for when we look at these datasets.”

BRD8430 is part of a class of compounds known as HDAC inhibitors. These compounds target histone deacetylases (HDACs), which are a type of gene-regulating protein with lots of effects. HDAC inhibitors have been connected to a variety of diseases, including sickle cell anemia, psychiatric diseases, metabolic diseases, and other forms of cancer. There are a number of different kinds of HDACs, and some inhibitors hit more than one of these targets. Broad associate member Jay Bradner, who has studied HDAC inhibitors in the context of sickle cell anemia, helped Stegmaier determine that BRD8430 selectively targets HDACs 1 and 2.

Duvall recalls the meeting where Stegmaier showed the team data suggesting that BRD8430 targeted HDACs 1 and 2. “When we saw the data, we realized that a door had opened,” he said. “We told her, you need to talk to the HDAC experts at the Broad: there’s a wealth of knowledge we could tap into right here.”

Ed Holson, director of medicinal chemistry for the Broad’s Stanley Center for Psychiatric Research, has been assembling a toolkit of selective HDAC inhibitors for the last four years, looking for cognitive enhancers that could be used to treat Alzheimer’s disease or post-traumatic stress disorder. When Holson heard about the neuroblastoma results, he immediately offered up the toolkit of compounds. These probe compounds helped the team confirm its results and validate its findings.

“We’re happy to share these compounds,” said Holson who has shared the toolkit with several other research groups. “The whole idea is to leverage the domain expertise that we have in the Stanley Center across [the Broad’s] platforms, programs, and wherever they might be applicable. HDACs have been implicated in a lot of different diseases, and the point of the toolkit is to get to a finer resolution about which HDACs are important in certain indications.”

Stegmaier and her colleagues also did a series of genetic experiments to turn off, or knock down, HDACs 1 and 2. These experiments also confirmed that these enzymes could play a key role in neuroblastoma differentiation. They then treated cells with both BRD8430 and cis-retinoic acid, a treatment already being given to patients with neuroblastoma, and found that the compound enhanced activity of the existing treatment, suggesting a possible role for combination therapy. But a long path to the clinic may lie ahead.

“While there are tool compounds that selectively target HDAC 1 and 2, there is not yet a commercially available compound with good drug-like properties,” said Stegmaier. “From a clinical perspective, that’s an important next step.”

But Stegmaier adds that if it is possible to develop a drug that selectively inhibits HDACs 1 and 2, but not the other HDACs, it could minimize toxicity. “We don’t know yet for certain, but there’s hope,” she said. “Companies have shown interest in pursuing selective inhibitors in the past – maybe these findings will reinvigorate that work.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

GTEx: Useful Expression For Cancer Research
GTEx Project has recently published several papers reporting on findings from its two-year pilot phase.
Tuesday, May 26, 2015
In vivo CRISPR-Cas9 Screen Sheds Light On Cancer Metastasis And Tumor Evolution
Genome-scale study points to drivers of tumor evolution and metastasis, provides roadmap for future in vivo Cas9 screens.
Friday, March 06, 2015
Disorder in Gene-Control System is a Defining Characteristic of Cancer, Study Finds
Findings indicate that the disarray in the on-off mechanism is one of the defining characteristics of cancer.
Tuesday, December 23, 2014
Two Studies Identify A Detectable, Pre-Cancerous State In The Blood
Findings pave way for new lines of cancer research focused on detection and prevention.
Thursday, November 27, 2014
Dramatic Response And Resistance To Cancer Drug Traced
Sequencing reveals why thyroid tumor responded to, and eventually resisted, treatment.
Friday, October 10, 2014
Study Expands the Cancer Genomics Universe
The universe of cancer mutations is much bigger than previously thought, and key cancer genes are still to be discovered.
Tuesday, January 28, 2014
Predicting Cancer’s Next Move
Research offers a new approach to studying drug resistance in cancer.
Monday, November 11, 2013
Study Finds Rules for Cancer Drivers
Any number of alterations to an individual’s genetic code has the potential to make a cell malfunction and proliferate into cancer tumors.
Monday, September 30, 2013
Broad Institute and Bayer Join Forces
The Broad Institute has entered into a strategic alliance with Bayer Healthcare in the area of oncogenomics and drug discovery.
Wednesday, September 11, 2013
Bringing Out the Usual – and Unusual – Cancer Genomics Suspects
Several years ago, researchers sequencing lung cancer genomes encountered a number of red herrings.
Tuesday, June 18, 2013
ATARiS Informatics Platform Hits the Jackpot
ATARiS is one of several tools developed at the Broad Institute to precisely tune in to the signals within noisy datasets.
Wednesday, May 22, 2013
Researchers Unearth New Clues About How Prostate Cancer Evolved
With the help of a computational model, Broad researchers were able to reconstruct the genomes of prostate cancer cells.
Thursday, May 16, 2013
Endometrial Cancer Findings Emerge from Genome Sequencing Study
Novel tumor sub-types have been identified that could lead to better risk stratification and more individualized and targeted treatments.
Friday, May 10, 2013
Delivering on a Promise: Nanoparticles Carry siRNA to Tumours
RNA interference, a gene-silencing phenomenon discovered in the late 1990s, was hailed for its potential as a treatment in cancer and other diseases.
Friday, September 21, 2012
New Potential Targets Discovered for Treating Squamous Cell Lung Cancers
The Cancer Genome Atlas finds important genomic alterations in second most common lung cancer type.
Monday, September 10, 2012
Scientific News
Long Telomeres Associated with Increased Lung Cancer Risk
Genetic predisposition for long telomeres predicts increased lung adenocarcinoma risk.
First Artificial Ribosome Designed
Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins and enzymes within the cell.
Identifying a Key Growth Factor in Cell Proliferation
Researchers discover that aspartate is a limiter of cell proliferation.
A Gene-Sequence Swap Using CRISPR to Cure Haemophilia
For the first time chromosomal defects responsible for hemophilia have been corrected in patient-specific iPSCs using CRISPR-Cas9 nucleases
New Tool Uses 'Drug Spillover' to Match Cancer Patients with Treatments
Researchers have developed a new tool that improves the ability to match drugs to disease: the Kinase Addiction Ranker (KAR) predicts what genetics are truly driving the cancer in any population of cells and chooses the best "kinase inhibitor" to silence these dangerous genetic causes of disease.
New Material Opens Possibilities for Super-Long-Acting Pills
A pH-responsive polymer gel could create swallow able devices, including capsules for ultra-long drug delivery.
New Tool For Investigating RNA Gone Awry
A new technology – called “Sticky-flares” – developed by nanomedicine experts at Northwestern University offers the first real-time method to track and observe the dynamics of RNA distribution as it is transported inside living cells.
Access Denied: Leukemia Thwarted by Cutting Off Link to Environmental Support
A new study reveals a protein’s critical – and previously unknown -- role in the development and progression of acute myeloid leukemia (AML), a fast-growing and extremely difficult-to-treat blood cancer.
New Weapon in the Fight Against Blood Cancer
This strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
TOPLESS Plants Provide Clues to Human Molecular Interactions
Scientists at Van Andel Research Institute have revealed an important molecular mechanism in plants that has significant similarities to certain signaling mechanisms in humans, which are closely linked to early embryonic development and to diseases such as cancer.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!