Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Studies Illuminate Functions of RNA

Published: Tuesday, June 11, 2013
Last Updated: Tuesday, June 11, 2013
Bookmark and Share
Researchers at the University of California illuminate the functional importance of a relatively new class of RNA molecules.

The work, published online this week in the journal Nature, suggests modulation of "enhancer-directed RNAs" or "eRNAs" could provide a new way to alter gene expression in living cells, perhaps affecting the development or pathology of many diseases.

Enhancers are sequences in the genome that act to boost or "enhance" the activity or expression of nearby genes. They "often behave in a cell-specific manner and play an important role in establishing a cell's identity and functional potential," said Christopher Glass, MD, PhD, a professor in the department of Medicine and Cellular and Molecular Medicine at UC San Diego and principal investigator of one of the papers.

Although enhancers have been recognized for more than 25 years, scientists have labored to fully flesh out the breadth and complexity of what enhancers do and how they do it. In 2010, it was discovered that enhancers directed expression of RNA on a broad scale in neurons and macrophages, a type of immune system cell. Dubbed eRNAs, they were different from other classes of nuclear non-coding RNAs, and raised new questions about their potential roles in the functions of enhancers. The two Nature papers attempt to answer some of these questions.

In the first, principal investigator Glass and colleagues investigated a pair of related transcriptional repressors called Rev-Erb-alpha and Rev-Erb-beta (proteins with important roles in regulating the circadian rhythm in many cell types) in mouse macrophages. Using genome-wide approaches, they found that the Rev-Erb proteins repressed gene expression in macrophages primarily by binding to enhancers. Collaboration with researchers at the Salk Institute for Biological Studies revealed that the repressive function of Rev-Erbs was highly correlated with their ability to repress the production of eRNAs.

In the second paper, principal investigator Michael G. Rosenfeld, MD, a professor in the UC San Diego Department of Medicine and Howard Hughes Medical Institute investigator, and colleagues looked at estrogen receptor binding in human breast cancer cells - and its impact on enhancer transcription. In contrast to the repressive functions of Rev-Erbs, estrogen receptors (ERs) activate gene expression; but, like Rev-Erbs, they primarily function by also binding to enhancers. ER binding was shown to be associated with increases in enhancer-directed eRNAs in the vicinity of estrogen-induced genes, and to exert roles on activation of coding target genes.

Both papers offer new evidence that eRNAs significantly contribute to enhancer activity, and therefore to expression of nearby genes. "Because many broadly expressed genes that play key roles in essential cellular functions are under the control of cell-specific enhancers, the ability to affect enhancer function by knocking down eRNAs could potentially provide a new strategy for altering gene expression in vivo in a cell-specific manner," said Glass, noting that in his research, anti-sense oligonucleotides were developed in conjunction with Isis Pharmaceuticals, which suppressed enhancer activity and reduced expression in nearby genes.

Co-authors of the Glass paper are Michael T. Y. Lam, Hanna P. Lesch, David Gosselin, Sven Heinz, Yumiko Tanaka-Oishi, Christopher Benner, Minna U. Kaikkonen, Mika Kosaka and Cindy Y. Lee, Department of Cellular and Molecular Medicine, UCSD; Han Cho, Salk Institute for Biological Studies; Aneeza S. Kim, Andy Watt and Tamar R. Grossman, Isis Pharmaceuticals, Inc.; and Ronald M. Evans, Salk Institute for Biological Studies and Howard Hughes Medical Institute; and Michael G. Rosenfeld.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,000+ scientific posters on ePosters
  • More than 4,400+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Study Yields the Key to Effective Personalized Medicine
A team of UCLA bioengineers and surgeons has taken a major step toward making personalized medicine a reality.
Monday, April 11, 2016
Crowdfunding the Fight Against Cancer
From budding social causes to groundbreaking businesses to the next big band, crowdfunding has helped connect countless worthy projects with like-minded people willing to support their efforts, even in small ways. But could crowdfunding help fight cancer?
Monday, February 08, 2016
Science Magazine Names CRISPR ‘Breakthrough of the Year’
In its year-end issue, the journal Science chose the CRISPR genome-editing technology invented at UC Berkeley 2015’s Breakthrough of the Year.
Monday, December 21, 2015
New Method for Screening Cancer Cells
Parallel microfiltration could lead to better treatments for a number of diseases, UCLA-led study says.
Thursday, December 03, 2015
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
Monday, November 23, 2015
Double Enzyme Hit May Explain Common Cancer Drug Side Effect
Mouse study suggests genomic screening before treatment may help prevent anemia.
Wednesday, October 14, 2015
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Scientific News
Detection of HPV in First-Void Urine
Similar sensitivity of HPV test on first void urine sample compared to cervical smear.
Potential “Good Fat” Biomarker
New method to measure the activity of energy consuming brown fat cells could ease the testing weight loss drugs.
Shape Of Tumor May Affect Whether Cells Can Metastasize
Illinois researchers found that the shape of a tumor may play a role in how cancer cells become primed to spread.
MicroRNA Pathway Could Lead to New Avenues for Leukemia Treatment
Cancer researchers at the University of Cincinnati have found a particular signaling route in microRNA (miR-22) that could lead to targets for acute myeloid leukemia, the most common type of fast-growing cancer of the blood and bone marrow.
Analysis of Dog Genome will Provide Insight into Human Disease
An important model in studying human disease, the non-coding RNA of the canine genome is an essential starting point for evolutionary and biomedical studies – according to a new study led by The Genome Analysis Centre (TGAC).
New Blood Test for The Earlier Diagnosis of Breast Cancer Spread
Researchers at University of Westminster have confirmed that a new blood test can detect if breast cancer has spread to other parts of the body.
First Gene Therapy Successful Against Human Aging
American woman gets biologically younger after gene therapies.
Targeting an ‘Undruggable’ Cancer Gene
RAS genes are mutated in more than 30 percent of human cancers and represent one of the most sought-after cancer targets for drug developers.
Altered Metabolism of Four Compounds Drives Glioblastoma Growth
Findings suggest new ways to treat the malignancy, slow its progression and reveal its extent more precisely.
Improving Engineered T-Cell Cancer Treatment
Purdue University researchers may have figured out a way to call off a cancer cell assassin that sometimes goes rogue and assign it a larger tumor-specific "hit list."
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,000+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,400+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!