Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Studies Illuminate Functions of RNA

Published: Tuesday, June 11, 2013
Last Updated: Tuesday, June 11, 2013
Bookmark and Share
Researchers at the University of California illuminate the functional importance of a relatively new class of RNA molecules.

The work, published online this week in the journal Nature, suggests modulation of "enhancer-directed RNAs" or "eRNAs" could provide a new way to alter gene expression in living cells, perhaps affecting the development or pathology of many diseases.

Enhancers are sequences in the genome that act to boost or "enhance" the activity or expression of nearby genes. They "often behave in a cell-specific manner and play an important role in establishing a cell's identity and functional potential," said Christopher Glass, MD, PhD, a professor in the department of Medicine and Cellular and Molecular Medicine at UC San Diego and principal investigator of one of the papers.

Although enhancers have been recognized for more than 25 years, scientists have labored to fully flesh out the breadth and complexity of what enhancers do and how they do it. In 2010, it was discovered that enhancers directed expression of RNA on a broad scale in neurons and macrophages, a type of immune system cell. Dubbed eRNAs, they were different from other classes of nuclear non-coding RNAs, and raised new questions about their potential roles in the functions of enhancers. The two Nature papers attempt to answer some of these questions.

In the first, principal investigator Glass and colleagues investigated a pair of related transcriptional repressors called Rev-Erb-alpha and Rev-Erb-beta (proteins with important roles in regulating the circadian rhythm in many cell types) in mouse macrophages. Using genome-wide approaches, they found that the Rev-Erb proteins repressed gene expression in macrophages primarily by binding to enhancers. Collaboration with researchers at the Salk Institute for Biological Studies revealed that the repressive function of Rev-Erbs was highly correlated with their ability to repress the production of eRNAs.

In the second paper, principal investigator Michael G. Rosenfeld, MD, a professor in the UC San Diego Department of Medicine and Howard Hughes Medical Institute investigator, and colleagues looked at estrogen receptor binding in human breast cancer cells - and its impact on enhancer transcription. In contrast to the repressive functions of Rev-Erbs, estrogen receptors (ERs) activate gene expression; but, like Rev-Erbs, they primarily function by also binding to enhancers. ER binding was shown to be associated with increases in enhancer-directed eRNAs in the vicinity of estrogen-induced genes, and to exert roles on activation of coding target genes.

Both papers offer new evidence that eRNAs significantly contribute to enhancer activity, and therefore to expression of nearby genes. "Because many broadly expressed genes that play key roles in essential cellular functions are under the control of cell-specific enhancers, the ability to affect enhancer function by knocking down eRNAs could potentially provide a new strategy for altering gene expression in vivo in a cell-specific manner," said Glass, noting that in his research, anti-sense oligonucleotides were developed in conjunction with Isis Pharmaceuticals, which suppressed enhancer activity and reduced expression in nearby genes.

Co-authors of the Glass paper are Michael T. Y. Lam, Hanna P. Lesch, David Gosselin, Sven Heinz, Yumiko Tanaka-Oishi, Christopher Benner, Minna U. Kaikkonen, Mika Kosaka and Cindy Y. Lee, Department of Cellular and Molecular Medicine, UCSD; Han Cho, Salk Institute for Biological Studies; Aneeza S. Kim, Andy Watt and Tamar R. Grossman, Isis Pharmaceuticals, Inc.; and Ronald M. Evans, Salk Institute for Biological Studies and Howard Hughes Medical Institute; and Michael G. Rosenfeld.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
Pan-Cancer Studies Find Common Patterns Shared by Different Tumor Types
Findings may open up new treatment options by extending therapies effective in one cancer type to others with a similar genomic profile.
Wednesday, October 02, 2013
RNA Molecule Is Behind Behavior Changes Cued by Environment
UCSF study may point to key mechanism of cellular memory.
Thursday, September 05, 2013
Disabling Enzyme Cripples Tumors, Cancer Cells
Knocking out a single enzyme dramatically cripples the ability of aggressive cancer cells to spread and grow tumors.
Thursday, September 05, 2013
Scientists Devise Innovative Method to Profile and Predict the Behavior of Proteins
A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell.
Friday, August 09, 2013
Non-Invasive Test Optimizes Colon Cancer Screening
Organized mailing campaigns could substantially increase colorectal cancer screening among uninsured patients.
Wednesday, August 07, 2013
Scientific News
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos