Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Proteome Sciences to Develop Cancer Pathway Profiling Assays

Published: Monday, June 17, 2013
Last Updated: Monday, June 17, 2013
Bookmark and Share
New MS3 TMT® mass spectrometry technique to determine relative quantitation of proteins in multiple samples simultaneously.

Proteome Sciences has announced its largest contract to date, a technology agreement with Thermo Fisher Scientific, valued at $2.1million by Proteome Sciences, to develop advanced methods to profile changes in key cancer pathways.

Proteome Sciences will provide Thermo Fisher with access to its patents covering a three-stage mass spectrometry (MS3) fragmentation methodology to deliver significantly improved analysis and accuracy.

Proteome Sciences will receive cash and Thermo Fisher will provide a no-cost lease for mass spectrometry equipment for Proteome Sciences to develop the pathway assays.

In addition Proteome Sciences will continue to develop advanced 20 and 30-plex Tandem Mass Tags (TMT®) for Thermo Fisher for the next additions to the TMT® range of tags.

The new MS3 TMT® (three-stage MS Tandem Mass Tag) mass spectrometry technique is a breakthrough mass spectrometry based workflow, enabling mass spectrometers to determine relative quantitation of proteins in multiple samples simultaneously and with improved accuracy.

“We are at a critical juncture toward the development of personalized medicine which requires high-resolution maps of the protein networks regulating disease,” said Dr. Ian Pike, Chief Operating Officer at Proteome Sciences.

Dr. Pike continued, “The combination of the highest sample multiplexing rates from TMT with the industry-leading Thermo Scientific Orbitrap mass spectrometer enables us to provide an unrivalled platform to investigate subtle but significant changes in the proteome.”

Proteome Sciences will leverage the combined power of TMT® and Orbitrap® technology to develop an expanded range of mass spectrometry assays for the pharmaceutical industry.

Through its SysQuant® workflows, Proteome will profile the low-level changes in activity of key cancer signalling pathways to facilitate optimal drug selection across a range of solid tumours.

This will enable clinicians to provide real-time patient management and the ability, for the first time, to deliver truly personalized medicine.

“Life sciences researchers today need to perform high-quality relative quantitation of many samples quickly,” said Ian Jardine, Chief Technology Officer, Chromatography and Mass Spectrometry, Thermo Fisher Scientific.

Jardine continued, “MS3 TMT® technology greatly improves quantitative accuracy and throughput, while Orbitrap® technology dramatically increases depth and quality of data. This agreement offers customers a new paradigm in proteomics research.”

“Our agreement with Thermo Fisher sets a new benchmark to establish and apply novel diagnostic and prognostic strategies in healthcare management,” said Christopher Pearce, Chief Executive of Proteome Sciences. “It has long been our goal to provide clinicians the tools they need to provide early diagnosis of disease and better match molecular targeting medicines to the most likely responders. The output from this agreement should have a profound positive impact on the lives of large numbers of patients suffering from chronic diseases and, at the same time, provide considerable economic benefits to the health care system.”


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,500+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Breakthrough Profiling Technology to Improve Cancer Treatment on a Personalized Basis
New research paper published in the peer reviewed journal PLOS ONE.
Saturday, April 12, 2014
Scientific News
Microscopic Fish are 3D-Printed to do More Than Swim
Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities.
Inciting an Immune Attack on Cancer Cells
A new minimally invasive vaccine that combines cancer cells and immune-enhancing factors could be used clinically to launch a destructive attack on tumors.
Reprogramming Cancer Cells
Researchers on Mayo Clinic’s Florida campus have discovered a way to potentially reprogram cancer cells back to normalcy.
New Strategy for Combating Adenoviruses
Using an animal model they developed, Saint Louis University and Utah State university researchers have identified a strategy that could keep a common group of viruses called adenoviruses from replicating and causing sickness in humans.
Surprising Mechanism Behind Antibiotic-Resistant Bacteria Uncovered
Now, scientists at TSRI have discovered that the important human pathogen Staphylococcus aureus, develops resistance to this drug by “switching on” a previously uncharacterized set of genes.
Fat in the Family?
Study could lead to therapeutics that boost metabolism.
Imaging Software Could Speed Up Breast Cancer Diagnosis
Researchers use high speed optical microscopy of intact breast tissue specimens to analyze breast tissue.
A Metabolic Master Switch Underlying Human Obesity
Researchers find pathway that controls metabolism by prompting fat cells to store or burn fat.
Synthetic DNA Vaccine Against MERS Shows Promise
A novel synthetic DNA vaccine can, for the first time, induce protective immunity against the Middle East Respiratory Syndrome (MERS) coronavirus in animal species.
How Small RNA Helps Form Memories
In a new study, a team of scientists at Scripps Florida has found that a type of genetic material called "microRNA" (miRNA) plays surprisingly different roles in the formation of memory in animal models.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!