Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Aspirin May Fight Cancer by Slowing DNA Damage

Published: Wednesday, June 19, 2013
Last Updated: Wednesday, June 19, 2013
Bookmark and Share
UCSF-led study of patients with pre-cancerous conditions probed NSAID effects on mutation rate.

Aspirin is known to lower risk for some cancers, and a new study led by a UC San Francisco scientist points to a possible explanation, with the discovery that aspirin slows the accumulation of DNA mutations in abnormal cells in at least one pre-cancerous condition.

“Aspirin and other non-steroidal anti-inflammatory drugs, which are commonly available and cost-effective medications, may exert cancer-preventing effects by lowering mutation rates,” said Carlo Maley, PhD, a member of the UCSF Helen Diller Family Comprehensive Cancer Center, and an expert on how cancers evolve in the body over time.

In the study, published June 13 in the online journal PLOS Genetics, Maley – working with gastroenterologist and geneticist Brian Reid, MD, PhD, of the Fred Hutchinson Cancer Research Center – analyzed biopsy samples from 13 patients with a pre-cancerous condition called Barrett’s esophagus who were tracked for six to 19 years. In an “observational crossover” study design, some patients started out taking daily aspirin for several years, and then stopped, while others started taking aspirin for the first time during observation. The goal was to track the rate of mutations in tissues sampled at different times.

The researchers found that biopsies taken while patients were on an aspirin regimen had on average accumulated new mutations about 10 times more slowly than biopsies obtained during years when patients were not taking aspirin.

“This is the first study to measure genome-wide mutation rates of a pre-malignant tissue within patients for more than a decade, and the first to evaluate how aspirin affects those rates,” Maley said.

Gender and ethnic distribution of study patients reflected the known demographics of esophageal cancer, which predominantly affects white, middle-aged and elderly men, he said. Barrett’s esophagus only occasionally progresses to esophageal cancer.

Asprin's Effect of Reducing Inflammation

Cancers are known to accumulate mutations over time much more rapidly than normal tissue, and different mutations arise in different groups of cells within the same tumor. The acquisition of key mutations ultimately allows tumor cells to grow out of control, and diversity within a tumor may foster drug resistance, a phenomenon that is a major focus of Maley’s research.

Maley plans to test a hypothesis that may explain the results – that aspirin’s lowering of mutation rates is due to the drug’s effect of reducing inflammation. Inflammation, a response of the immune system, in recent years has been recognized as a hallmark of cancer. Maley said that less inflammation may result in less production within pre-cancerous tissue of oxidants known to damage DNA, and may dampen growth-stimulating signaling.

For the duration of the study, the rate of accumulation of mutations measured in the biopsied tissue between time points was slow, even when patients were not taking aspirin, with the exception of one patient. While mutations accumulated at a steady rate, the vast majority of mutations arose before the abnormal tissue was first detected in the clinic, the researchers concluded.

These findings are consistent with the fact that although Barrett’s esophagus is a significant risk factor for esophageal cancer, the vast majority of cases do not progress to cancer, Maley said.

In the one patient who later went on to develop cancer, a population of cellular “clones” with a great number of mutations emerged shortly before he started taking aspirin.

Expanding Research to Include Lung Cancer Cases

More studies are needed to further explore the link between non-steroidal anti-inflammatory drugs, mutation rates and the development of invasive cancer, Maley said. He plans to continue studying Barrett’s esophagus and esophageal cancer, and to expand his research to investigate lung cancer.

Rather than aiming to kill the most tumor cells, it may be better to try to halt or slow growth and mutation. Current drug treatments for cancer may in many cases hasten the emergence of cancer that is more difficult to eradicate, according to Maley. The capability to mutate frequently allows tumors to become resistant to drug treatment, he said. A better-adapted mutant can begin to spin off a population of genetic clones that survives and grows, while poorly adapted tumor cells die off.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,700+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.
Tuesday, September 29, 2015
Scientists Create CRISPR/Cas9 Knock-In Mutations in Human T Cells
In a project spearheaded by investigators at UC San Francisco, scientists have devised a new strategy to precisely modify human T cells using the genome-editing system known as CRISPR/Cas9.
Tuesday, July 28, 2015
Delivering Drugs to the Right Place
Thomas Weimbs has developed a targeted drug delivery method that could potentially slow the progression of polycystic kidney disease.
Monday, June 29, 2015
Designing New Pain Relief Drugs
Researchers have identified the molecular interactions that allow capsaicin to activate the body’s primary receptor for sensing heat and pain, paving the way for the design of more selective and effective drugs to relieve pain.
Thursday, June 11, 2015
Genetic Markers for Detecting and Treating Ovarian Cancer
Custom bioinformatics algorithm identifies human mRNAs that distinguish ovarian cancer cells from normal cells and provide new therapeutic targets
Wednesday, May 27, 2015
Using microRNA Fit to a T (Cell)
Researchers show B cells can deliver potentially therapeutic bits of modified RNA.
Friday, November 29, 2013
Digging Deeper Into Cancer
What a pathologist looks for in a Pap test sample, but hopes not to find, are oddly shaped cells with abnormally large nuclei. The same is true for prostate and lung cancer biopsies.
Tuesday, November 19, 2013
Nanotech Method Show Promise Against Pancreatic Cancer
Researchers at UCLA's Jonsson Comprehensive Cancer Center have developed a new technique for fighting deadly and hard-to-treat pancreatic cancer.
Monday, November 18, 2013
Researchers Un-Junking Junk DNA
A study shines a new light on molecular tools our cells use to govern regulated gene expression.
Wednesday, November 13, 2013
Powerful Anti-Cancer Compound Safely Delivered
Researchers have discovered a way to effectively deliver staurosporine (STS).
Tuesday, October 22, 2013
Pan-Cancer Studies Find Common Patterns Shared by Different Tumor Types
Findings may open up new treatment options by extending therapies effective in one cancer type to others with a similar genomic profile.
Wednesday, October 02, 2013
RNA Molecule Is Behind Behavior Changes Cued by Environment
UCSF study may point to key mechanism of cellular memory.
Thursday, September 05, 2013
Disabling Enzyme Cripples Tumors, Cancer Cells
Knocking out a single enzyme dramatically cripples the ability of aggressive cancer cells to spread and grow tumors.
Thursday, September 05, 2013
Scientists Devise Innovative Method to Profile and Predict the Behavior of Proteins
A class of proteins that are made up of multiple, interlocking molecular components, enzymes perform a variety of tasks inside each cell.
Friday, August 09, 2013
Non-Invasive Test Optimizes Colon Cancer Screening
Organized mailing campaigns could substantially increase colorectal cancer screening among uninsured patients.
Wednesday, August 07, 2013
Scientific News
Gene Editing Could Enable Pig-To-Human Organ Transplant
The largest number of simultaneous gene edits ever accomplished in the genome could help bridge the gap between organ transplant scarcity and the countless patients who need them.
Antioxidants Cause Malignant Melanoma to Metastasize Faster
Fresh research at Sahlgrenska Academy has found that antioxidants can double the rate of melanoma metastasis in mice.
Have Your Drug Nano-Delivered Via Microbubble
A UC engineering professor is working to develop effective nanoparticle-bubble drug delivery systems to access precise locations in the body to treat medical conditions such as cancer, eye disease and spinal disc degeneration.
Potential New Diagnosis and Therapy for Breast Cancer
Scientists at the University of York, using clinical specimens from charity Breast Cancer Now’s Tissue Bank, have conducted new research into a specific sodium channel that indicates the presence of cancer cells and affects tumour growth rates.
Paving the Way for Diamonds to Trace Early Cancers
Researchers from the University of Sydney reveal how nanoscale 'diamonds' can light up early-stage cancers in MRI scans.
Researchers Develop Classification Model for Cancers Caused by KRAS
Most frequently mutated cancer gene help oncologists choose more effective cancer therapies.
Tolerant Immune System Increases Cancer Risk
Researchers have found that individuals with high immunoCRIT ratios may have an increased risk of developing certain cancers.
Developing a Gel that Mimics Human Breast for Cancer Research
Scientists at the Universities of Manchester and Nottingham have been funded to develop a gel that will match many of the biological structures of human breast tissue, to advance cancer research and reduce animal testing.
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,700+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos