Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Moffitt Cancer Center Researchers Identify Genetic Variants for Prostate Cancers

Published: Monday, June 24, 2013
Last Updated: Monday, June 24, 2013
Bookmark and Share
Researchers have developed a method for identifying aggressive prostate cancers that require immediate therapy.

It relies on understanding the genetic interaction between single nucleotide polymorphisms (SNPs). The goal is to better predict a prostate cancer’s aggressiveness to avoid unnecessary radical treatment.

Their study was published in the online journal PLOS ONE in April.

According to the authors, prostate cancer accounts for 20 percent of all cancers and 9 percent of cancer deaths. It is the most common cancer and was the second leading cause of cancer death in American men in 2012.

“For most prostate cancer patients, the disease progresses relatively slowly,” said study co-author Hui-Yi Lin, Ph.D., assistant member of the Chemical Biology and Molecular Medicine Program at Moffitt. “However, some cases grow aggressively and metastasize. It is often difficult to tell the difference between the two.”

The two treatment options for aggressive prostate cancer — radical surgery and radiation therapy — have negative side effects, such as incontinence and erectile dysfunction. It is why the authors believe there is an urgent need for biomarkers that can identify or predict aggressive types of prostate cancer.

Through examining combinations of genetic variants, or SNP-SNP interactions, the researchers have identified and validated several genetic changes that are related to prostate cancer aggressiveness. Their work also shows that the epithelial growth factor receptor may be the hub for these interactions because it is involved in the growth of blood vessels (angiogenesis), which in turn stimulates tumor growth.

“Our findings identified five SNP-SNP interactions in the angiogenesis genes associated with prostate cancer aggressiveness,” explained study co-author Jong Y. Park, Ph.D., associate member of Moffitt’s Cancer Epidemiology Program. “We successfully detected the genotype combinations that put patients at risk of aggressive prostate cancer and then explored the underlying biological associations among angiogenesis genes associated with aggressive prostate cancer.”

The researchers concluded that the gene network they constructed based on SNP-SNP interactions indicates there are novel relationships among critical genes involved in the angiogenesis pathway in prostate cancer.

“Our findings will help physicians identify patients with an aggressive type of prostate cancer and may lead to better personalized treatment in the future,” Park said.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Moffitt, Vermillion Collaborate to Model Improvements in Ovarian Cancer Care
The purpose of the study is to produce clinical and economic data to support a new value-based practice model.
Monday, May 12, 2014
Protein Complex Linked to Cancer Growth May Also Help Fight Tumors
Researchers have discovered a gene expression signature that may lead to new immune therapies for lung cancer patients.
Thursday, July 25, 2013
Race, Ethnicity Affect Likelihood of Finding a Suitable Unrelated Stem Cell Donor
Researchers at Moffitt Cancer Center describe the greater difficulty in finding matched, unrelated donors for non-Caucasian patients who are candidates for hematopoietic cell transplantation (HCT).
Monday, September 17, 2012
Scientific News
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos