Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Bacterial DNA May Integrate Into Human Genome More Readily in Tumor Tissue

Published: Thursday, June 27, 2013
Last Updated: Thursday, June 27, 2013
Bookmark and Share
Gene transfer may play role in cancer, other diseases linked with DNA damage.

Bacterial DNA may integrate into the human genome more readily in tumors than in normal human tissue, scientists have found.

The researchers, affiliated with the University of Maryland School of Medicine's Institute for Genome Sciences, analyzed genomic sequencing data available from the Human Genome Project, the 1,000 Genomes Project and The Cancer Genome Atlas.

They considered the phenomenon of lateral gene transfer (LGT), the transmission of genetic material between organisms in a manner other than than traditional reproduction.

Scientists have already shown that bacteria can transfer DNA to the genome of an animal.

The researchers found evidence that lateral gene transfer is possible from bacteria to the cells of the human body, known as human somatic cells.

They found that bacterial DNA was more likely to integrate in the genome in tumor samples than in normal, healthy somatic cells. The phenomenon might play a role in cancer and other diseases associated with DNA damage.

"Advances in genomic and computational sciences are revealing the vast ways in which humans interact with an ever-present and endlessly diverse planet of microbes," says Matt Kane, program director in the National Science Foundation's Division of Environmental Biology in its Directorate for Biological Sciences, which funded the research.

"This discovery underscores the benefits that can result from a shift in our understanding of how this vast diversity of microbes and their genes may affect our health."

The results may lead to advances in personalized medicine, scientists say, in which doctors use each patient's genomic make-up to determine care and preventive measures.

A paper reporting the results is published today in the journal PLOS Computational Biology.

"LGT from bacteria to animals was only described recently, and it is exciting to find that such transfers can be found in the genome of human somatic cells and particularly in cancer genomes," says Julie Dunning Hotopp of the University of Maryland School of Medicine and lead author of the paper.

Hotopp also is a research scientist at the University of Maryland Marlene and Stewart Greenebaum Cancer Center.

"Studies applying this approach to additional cancer genome projects could be fruitful, leading us to a better understanding of the mechanisms of cancer."

The researchers found that while only 63.5 percent of TCGA samples analyzed were from tumors, the tumor samples contained 99.9 percent of reads supporting bacterial integration.

The data present a compelling case that LGT occurs in the human somatic genome, and that it could have an important role in cancer and other human diseases associated with mutations.

It's possible that LGT mutations play a role in carcinogenesis, the scientists say, yet it's also possible that they could simply be "passenger mutations."

The investigators suggest several competing ideas to explain the results, though more research is needed for definitive answers.

One possibility is that the mutations are part of carcinogenesis, the process by which normal cells turn into cancer cells.

Alternatively, tumor cells are very rapidly proliferating, so much so that they may be more permissive to lateral gene transfer.

It's also possible that bacteria are causing these mutations because they benefit the bacteria themselves.

The study was also funded by the National Institutes of Health.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,600+ scientific posters on ePosters
  • More than 3,800+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

'Smuggling' Drugs at the Cellular Level
Drexel researchers use ultrasound to deliver customized medication through the skin.
Wednesday, December 11, 2013
Identifying the Pathway that Leads to Cells Forming into an Individual Body
By studying how genes influence cells to migrate and mutate, scientist hopes findings will lead to improved cancer treatments.
Wednesday, December 11, 2013
Scientific News
New Gene Therapy for Vision Loss From a Mitochondrial Disease
NIH-funded study shows success in targeting mitochondrial DNA in mice.
Predictive Model for Breast Cancer Progression
Biomedical engineers have demonstrated a proof-of-principle technique that could give women and their oncologists more personalized information to help them choose options for treating breast cancer.
Specific Variations in RNA Splicing Linked to Breast Cancer
Researchers have identified cellular changes that may play a role in converting normal breast cells into tumors. Targeting these changes could potentially lead to therapies for some forms of breast cancer.
Gene Expression: A Snapshot of Stem Cell Development
New genes found that regulate development of stem cells.
Assessing Cancer Patient Survival and Drug Sensitivity
RNA editing events another way to investigate biomarkers and therapy targets.
Editing Genes to Create HIV Killers
Seattle scientists have managed to genetically transform human cells in the lab from HIV targets to HIV killers, and the technique could have implications for cancer and other diseases.
Researchers Disguise Drugs As Platelets to Target Cancer
Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient’s own platelets.
A New Single-Molecule Tool to Observe Enzymes at Work
A team of scientists at the University of Washington and the biotechnology company Illumina have created an innovative tool to directly detect the delicate, single-molecule interactions between DNA and enzymatic proteins.
Milestone Single-Biomolecule Imaging Technique May Advance Drug Design
The first nanometer resolved image of individual tobacco mosaic virions shows the potential of low-energy electron holography for imaging biomolecules at a single particle level; a milestone in structural biology and a potential new tool for drug design.
Opening the Door to Safer, More Precise Cancer Therapies
New method regulates when, and how strongly, cancer-killing therapeutic T cells are activated.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,600+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,800+ scientific videos