Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Cancer-Linked Fam190a Gene Found to Regulate Cell Division

Published: Thursday, July 04, 2013
Last Updated: Thursday, July 04, 2013
Bookmark and Share
Scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis.

Research suggests that mutations in the gene may contribute to commonly found chromosomal instability in cancer.

In laboratory studies of cells, investigators found that knocking down expression of FAM190A disrupts mitosis. In three pancreatic cancer-cell lines and a standard human-cell line engineered to be deficient in FAM190A, researchers observed that cells often had difficulty separating at the end of mitosis, creating cells with two or more nuclei. The American Journal of Pathology published a description of the work online May 17, which comes nearly a century after German scientist Theodor Boveri linked abnormal mitosis to cancer. Until now, there had been no common gene alteration identified as the culprit for cancer-linked mitosis.

“These cells try to divide, and it looks like they succeed, except they wind up with a strand that connects them,” explains Scott Kern, M.D., professor of oncology and pathology at Johns Hopkins University School of Medicine and its Kimmel Cancer Center. “The next time they try to divide, all the nuclei come together, and they try to make four cells instead of two. Subsequently, they try to make eight cells, and so on.” Movies of the process taken by Kern’s laboratory are available on the journal Web site.

Kern’s group previously reported that deletions in the FAM190A gene could be found in nearly 40 percent of human cancers. That report, published in 2011 in the journal Oncotarget, and the current one are believed to be the only published papers focused solely on FAM190A, which is frequently altered in human cancers but whose function has been unknown. Alterations in FAM190A messages may be the third most common in human cancers after those for the more well-known genes p53 and p16, Kern says.

“We don’t think that a species can exist without FAM190, but we don’t think severe defects in FAM190A readily survive among cancers,” Kern says. “The mutations seen here are very special – they don’t take out the whole gene but instead remove an internal portion and leave what we call the reading frame. We think we’re finding a more subtle defect in human cancers, in which mitosis defects can occur episodically, and we propose it may happen in about 40 percent of human cancers.”

Abnormalities in FAM190A may cause chromosomal imbalances seen so commonly in cancers, Kern says. Multipolar mitosis is one of the most common functional defects reported in human cancers, and more than 90 percent of human cancers have abnormal numbers of chromosomes.

Kern says he plans to study FAM190A further by creating lab models of the subtle defects akin to what actually is tolerated by human cancer cells.

The work was supported by the National Institutes of Health (National Cancer Institute, CA134292, CA62924, CA128920) and by the Everett and Marjorie Kovler Professorship in Pancreas Cancer Research. Co-authors were Kalpesh Patel, Francesca Scrimieri, Soma Ghosh, Jun Zhong, Min-Sik Kim, Yunzhao R. Ren, Richard A. Morgan, Christine A. Iacobuzio-Donahue, and Akhilesh Pandey of Johns Hopkins.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bad Luck of Random Mutations Plays Predominant Role in Cancer, Study Shows
Statistical modeling links cancer risk with number of stem cell divisions.
Tuesday, January 06, 2015
Cancer Leaves a Common Fingerprint on DNA
Chemical alterations to genes appear key to tumor development.
Tuesday, August 26, 2014
Signals Found That Recruit Host Animals’ Cells, Enabling Breast Cancer Metastasis
Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained.
Thursday, May 22, 2014
Common Genetic Pathway Could Be Conduit to Pediatric Tumor Treatment
Investigators have found a known genetic pathway to be active in many difficult-to-treat pediatric brain tumors called low-grade gliomas.
Monday, November 11, 2013
A Simple Blood Test May Catch Early Pancreatic Cancer
Currently, disease usually found too late to save lives.
Wednesday, October 30, 2013
Tumor-suppressor Protein Gives Up Its Secrets
Discovery promises new targets for cancer drug design.
Friday, July 12, 2013
Scientists Pair Blood Test and Gene Sequencing to Detect Cancer
Scientists have combined the ability to detect cancer DNA in the blood with genome sequencing technology in a test that could be used to screen for cancers, monitor cancer patients for recurrence and find residual cancer left after surgery.
Friday, November 30, 2012
Researchers Link New Molecular Culprit to Breast Cancer Progression
Johns Hopkins researchers have uncovered a protein “partner” commonly used by breast cancer cells to unlock genes needed for spreading the disease around the body.
Wednesday, November 28, 2012
Lost Molecule is Lethal for Liver Cancer Cells in Mice
MicroRNA kills tumor cells and lets healthy cells live. Scientists at Johns Hopkins have discovered a potential strategy for cancer therapy by focusing on what’s missing in tumors.
Friday, June 12, 2009
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos