Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hijacking Stress Response in Cancer

Published: Thursday, July 04, 2013
Last Updated: Thursday, July 04, 2013
Bookmark and Share
Scientists determine novel regulation of metabolic pathways in cancer.

Cancer cells have alteration in metabolic pathways as a result of oncogenes that promote tumor growth. NRF2 (nuclear factor erythroid-derived 2-related factor 2) works as a “master gene” that turns on stress response by increasing numerous antioxidants and pollutant-detoxifying genes to protect the lungs from variety of air pollutants such as diesel exhaust and cigarette smoke. However, researchers at the Johns Hopkins Bloomberg School of Public Health and others have found for the first time that NRF2 signaling also plays a role in the growth of tumor cells by altering metabolic pathways. The study is published in the July issue of the Journal of Clinical Investigation.

“Previously, we had reported that lung cancer cells, due to mutation in inhibitors of NRF2, hijack the stress response pathway to cause chemoresistance,” said Shyam Biswal, PhD, lead investigator of the study and professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health. “With our latest study, we show how the NRF2 pathway reprograms glucose metabolism, leading to increased energy production and tumor cell proliferation.  A better understanding of this process could lead to potential cancer treatments.”

The Johns Hopkins study demonstrated an important and previously unrecognized role for the NRF2 transcription factor in regulating cell metabolism. Specifically, NRF2 regulates genes miR-1 and miR-206 to “reprogram” glucose metabolism through PPP (pentose phosphate pathway) and the TCA (tricarboxylic acid) cycle, and fatty acid synthesis. The study demonstrated that these enzyme pathways, working together in specific patterns, stimulated tumor growth. The researchers validated their findings through a series of in vitro experiments and studies involving mice.

“Although Nrf2 has been extensively studied as a target for chemoprevention, recent work from our group and others have highlighted the idea of developing inhibitors of Nrf2 to inhibit cancer ” said Anju Singh, PhD, lead author of the study and assistant scientist in the Bloomberg School’s Department of Environmental Health Sciences. Using an integrated genomics and 13C-based metabolic flux system wide association analysis, we demonstrate that Nrf2 modulates glucose flux through PPP and TCA cycles in cancer cells. Biswal concludes that “This study reinforces the idea that targeting Nrf2 with small molecule inhibitors will starve the cancer cells by affecting metabolic pathways as well as decrease antioxidants and detoxification genes to intervene in therapeutic resistance.” Biswal’s group has been working with the National Center for Advancing Translational Sciences at NIH to develop Nrf2 inhibitors for cancer therapy.

“Transcription factor NRF2 regulated miR-1 and miR-206 to drive tumorigenesis” The study involved laboratories from the Johns Hopkins Center for Cancer Research, the National Cancer Institute, the Massachusetts College of Pharmacy, the Dana-Farber Cancer Institute, UCLA and the University of Maryland School of Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,300+ scientific posters on ePosters
  • More than 4,800+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Liquid Biopsies: Miracle Diagnostic or Next New Fad?
Thanks to the development of highly specific gene-amplification and sequencing technologies liquid biopsies access more biomarkers relevant to more cancers than ever before.
Cancer Gene-Drug Combinations Ripe for Precision Medicine
The study aims to expand the number of cancer gene mutations that can be paired with a precision therapy.
Exploiting Malaria’s Achilles’ Heel
Researchers have uncovered an Achilles' heel in malaria's anti-drug treatment arsenal that could lead to a disease cure.
Targeting BRAF Mutations in Thyroid Cancer
Treating metastatic thyroid cancer patients harboring a BRAF mutation with vemurafenib showed anti-tumor activity in a third of patients.
Colon Cancer Blocked in Mice
Case Western Reserve University Researchers block common type of colon cancer tumour in mice, laying groundwork for human clinical trial.
Protein Nanocages Could Improve Drug Design and Delivery
HHMI scientists have designed and built 10 large protein icosahedra that are similar to viral capsids that carry viral DNA.
Cancer Related Immune Response Genes Uncovered
Researchers at the SBP have identified over 100 new genetic regions that affect the immune response to cancer.
New Therapeutic Targets For Small Cell Lung Cancer Identified
Researchers at UTSW Medical Center have identified a protein termed ASCL1 that is essential to the development of small cell lung cancer.
Liquid Biopsies Treating Ovarian Cancer
Researchers have discovered a promising monitor and treat recurrence of ovarian cancer. Detecting cancer long before tumours reappear.
Virus Inspired Cell Cargo Ships
Virus-inspired container design may lead to cell cargo ships following construction of ten large, two-component, icosahedral protein complexes.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,300+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,800+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!