Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Hijacking Stress Response in Cancer

Published: Thursday, July 04, 2013
Last Updated: Thursday, July 04, 2013
Bookmark and Share
Scientists determine novel regulation of metabolic pathways in cancer.

Cancer cells have alteration in metabolic pathways as a result of oncogenes that promote tumor growth. NRF2 (nuclear factor erythroid-derived 2-related factor 2) works as a “master gene” that turns on stress response by increasing numerous antioxidants and pollutant-detoxifying genes to protect the lungs from variety of air pollutants such as diesel exhaust and cigarette smoke. However, researchers at the Johns Hopkins Bloomberg School of Public Health and others have found for the first time that NRF2 signaling also plays a role in the growth of tumor cells by altering metabolic pathways. The study is published in the July issue of the Journal of Clinical Investigation.

“Previously, we had reported that lung cancer cells, due to mutation in inhibitors of NRF2, hijack the stress response pathway to cause chemoresistance,” said Shyam Biswal, PhD, lead investigator of the study and professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health. “With our latest study, we show how the NRF2 pathway reprograms glucose metabolism, leading to increased energy production and tumor cell proliferation.  A better understanding of this process could lead to potential cancer treatments.”

The Johns Hopkins study demonstrated an important and previously unrecognized role for the NRF2 transcription factor in regulating cell metabolism. Specifically, NRF2 regulates genes miR-1 and miR-206 to “reprogram” glucose metabolism through PPP (pentose phosphate pathway) and the TCA (tricarboxylic acid) cycle, and fatty acid synthesis. The study demonstrated that these enzyme pathways, working together in specific patterns, stimulated tumor growth. The researchers validated their findings through a series of in vitro experiments and studies involving mice.

“Although Nrf2 has been extensively studied as a target for chemoprevention, recent work from our group and others have highlighted the idea of developing inhibitors of Nrf2 to inhibit cancer ” said Anju Singh, PhD, lead author of the study and assistant scientist in the Bloomberg School’s Department of Environmental Health Sciences. Using an integrated genomics and 13C-based metabolic flux system wide association analysis, we demonstrate that Nrf2 modulates glucose flux through PPP and TCA cycles in cancer cells. Biswal concludes that “This study reinforces the idea that targeting Nrf2 with small molecule inhibitors will starve the cancer cells by affecting metabolic pathways as well as decrease antioxidants and detoxification genes to intervene in therapeutic resistance.” Biswal’s group has been working with the National Center for Advancing Translational Sciences at NIH to develop Nrf2 inhibitors for cancer therapy.

“Transcription factor NRF2 regulated miR-1 and miR-206 to drive tumorigenesis” The study involved laboratories from the Johns Hopkins Center for Cancer Research, the National Cancer Institute, the Massachusetts College of Pharmacy, the Dana-Farber Cancer Institute, UCLA and the University of Maryland School of Medicine.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,500+ scientific posters on ePosters
  • More than 5,000+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.


Scientific News
Potential of New Insect Control Traits in Agriculture
Researchers have discovered a protein that shows promise as an alternate corn rootworm control mechanism.
Fighting Cancer with Sticky Nanoparticles
Treatment that uses bioadhesive nanoparticles drug carriers proved more effective than conventional treatments for certain cancers.
Fighting Plant Pathogens with RNA
Researchers develop strategy that could lead to environmentally friendly fungicide to fight pathogens.
Smart Material Hunts Cancers
Team has created smart material that locates and images cancer or tumour sites in tissue.
Examining mtDNA May Help Identify Unknown Ancestry That Influences Breast Cancer Risk
Researchers studying mtDNA in a group of triple negative breast cancer patients found that 13 percent of participants were unaware of ancestry that could influence their risk of cancer.
Gene Therapy Technique May Help Prevent Cancer Metastasis
Gene-regulating RNA molecules could help treat early-stage breast cancer tumors before they spread.
Enhancing Antibiotics to Defeat Resistant Bacteria
Scientists enhance ability of antibiotics to defeat resistant types of bacteria using molecules called PPMOs
MRI Guidance Aids Stem Cell Delivery
Scientists have delivered stem cells to the brain with unprecedented precision, infusing the cells under real-time MRI guidance.
High-Capacity Nanoparticles
New type of nanoparticle can now have three or more drugs packaged within it, allowing for customised cancer therapy.
UTSW Creates Nanoparticles That Target Lung Cancer Cells
Researchers at UTSW have developed a synthetic polymers that could deliver nucleic acid drugs while possessing enough structural diversity to discover cancer cell-specific nanoparticles.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,500+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
5,000+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!