Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Tumor-suppressor Protein Gives Up Its Secrets

Published: Friday, July 12, 2013
Last Updated: Friday, July 12, 2013
Bookmark and Share
Discovery promises new targets for cancer drug design.

Genetic mutations aren’t the only thing that can keep a protein called PTEN from doing its tumor-suppressing job. Johns Hopkins researchers have now discovered that four small chemical tags attached (reversibly) to the protein’s tail can have the same effect, and they say their finding may offer a novel path for drug design to keep PTEN working.

In a report published on July 9 in the journal eLife, the Johns Hopkins scientists describe how a cluster of four phosphate groups, first found 13 years ago to bind to PTEN’s tail, controls its activity.

“Now that we know how these phosphate tags are involved in regulating PTEN’s activity, new options may be available for drugs that interfere with them,” says Philip A. Cole, M.D., Ph.D., the E.K. Marshall and Thomas H. Maren Professor and director of the Department of Pharmacology and Molecular Sciences at the Johns Hopkins University School of Medicine.

In addition to phosphate tags, mutations in genes that code for a protein can cause some protein activities to be permanently on or off. Mutations that deactivate PTEN often lead to cancer because PTEN’s job is to prevent cells from dividing too much, Cole notes. But there are times when a cell needs to divide to replace dead cells, so scientists knew there had to be a naturally occurring mechanism for turning PTEN off, and they hypothesized that the phosphates on its tail were responsible, as they are in other proteins.

To get at the heart of the question, the Johns Hopkins team had to overcome technical obstacles, including a way to engineer a special version of PTEN in which the phosphates were permanently bound to the tail.

“We had to synthesize the tail of PTEN in the lab and then fit that together with the rest of PTEN, which was made by insect cells,” says David Bolduc, a graduate student in Cole’s laboratory and the lead author of the paper. “Once we cleared that hurdle, we were able to learn a lot more about how phosphates regulate PTEN.”

Armed with their engineered protein, the team analyzed its shape, where in cells it was located and its activity — tasks aided by miniature X-ray imagers and biochemical tests that shed light on how PTEN interacted with other entities, like PIP3, a fat-like molecule located just inside the outer envelope of cells.

The team found that when there are no phosphates on PTEN’s tail, it is in its active form and it removes a phosphate tag from PIP3. The loss of the phosphate alters PIP3’s activity and causes a chain reaction of effects on other important regulatory proteins that ultimately suppresses cell division and migration, both deadly aspects of tumor progression.

Cole explains that when a cell needs to divide, another protein, most often CK2, adds phosphates to PTEN’s tail, causing a change in its shape and location. Its tail curls back on the rest of the protein and prevents it from interacting with PIP3 in the outer envelope of the cell, so PTEN ends up inactive, in the fluid-filled middle of the cell. When the phosphates are removed, PTEN relocates to the outer envelope, where it removes a phosphate tag from PIP3 to initiate the chain reaction that suppresses tumor formation.

“The tail of PTEN actually has a competition going on between binding to itself and binding to the outer envelope of the cell where PIP3 is located,” explains Bolduc. “Any drug that can prevent the tail from binding itself might also maintain the tumor-fighting activity of PTEN.”

According to Cole, many cancer patients have an overabundance of CK2, the protein that adds phosphates to PTEN and turns it off. So, increasing the activity of PTEN might be helpful not only to patients with defective PTEN, but also to those with cancer-causing mutations in other proteins.


Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,400+ scientific posters on ePosters
  • More than 3,700+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bad Luck of Random Mutations Plays Predominant Role in Cancer, Study Shows
Statistical modeling links cancer risk with number of stem cell divisions.
Tuesday, January 06, 2015
Cancer Leaves a Common Fingerprint on DNA
Chemical alterations to genes appear key to tumor development.
Tuesday, August 26, 2014
Signals Found That Recruit Host Animals’ Cells, Enabling Breast Cancer Metastasis
Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained.
Thursday, May 22, 2014
Common Genetic Pathway Could Be Conduit to Pediatric Tumor Treatment
Investigators have found a known genetic pathway to be active in many difficult-to-treat pediatric brain tumors called low-grade gliomas.
Monday, November 11, 2013
A Simple Blood Test May Catch Early Pancreatic Cancer
Currently, disease usually found too late to save lives.
Wednesday, October 30, 2013
Cancer-Linked Fam190a Gene Found to Regulate Cell Division
Scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis.
Thursday, July 04, 2013
Scientists Pair Blood Test and Gene Sequencing to Detect Cancer
Scientists have combined the ability to detect cancer DNA in the blood with genome sequencing technology in a test that could be used to screen for cancers, monitor cancer patients for recurrence and find residual cancer left after surgery.
Friday, November 30, 2012
Researchers Link New Molecular Culprit to Breast Cancer Progression
Johns Hopkins researchers have uncovered a protein “partner” commonly used by breast cancer cells to unlock genes needed for spreading the disease around the body.
Wednesday, November 28, 2012
Lost Molecule is Lethal for Liver Cancer Cells in Mice
MicroRNA kills tumor cells and lets healthy cells live. Scientists at Johns Hopkins have discovered a potential strategy for cancer therapy by focusing on what’s missing in tumors.
Friday, June 12, 2009
Scientific News
RNAi Screening Trends
Understand current trends and learn which application areas are expected to gain in popularity over the next few years.
Long-sought Discovery Fills in Missing Details of Cell 'Switchboard'
A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.
Tracking Breast Cancer Before it Grows
A team of scientists led by University of Saskatchewan researcher Saroj Kumar is using cutting-edge Canadian Light Source techniques to screen and treat breast cancer at its earliest changes.
New Mussel-Inspired Surgical Protein Glue
Korean scientists have developed a light-activated, mussel protein-based bioadhesive that works on the same principles as mussels attaching to underwater surfaces and insects maintaining structural balance and flexibility.
Web App Helps Researchers Explore Cancer Genetics
Brown University computer scientists have developed a new interactive tool to help researchers and clinicians explore the genetic underpinnings of cancer.
Researchers Develop Vaccine that Protects Primates Against Ebola
A collaborative team from The University of Texas Medical Branch at Galveston and the National Institutes of Health have developed an inhalable vaccine that protects primates against Ebola.
Nanoparticles Can Clean Up Environmental Pollutants
Researchers have found that nanomaterials and UV light can “trap” chemicals for easy removal from soil and water.
Immunotherapy Shows Promise for Myeloma
A strategy, which uses patients’ own immune cells, genetically engineered to target tumors, has shown significant success against multiple myeloma, a cancer of the plasma cells that is largely incurable.
AncestryDNA and Calico to Research the Genetics of Human Lifespan
Collaboration will analyze family history and genetics to facilitate development of cutting-edge therapeutics.
Study Shows Promise of Precision Medicine for Most Common Type of Lymphoma
The study appeared online July 20, 2015, in Nature Medicine.
SELECTBIO

Skyscraper Banner
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,400+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
3,700+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FREE!