Corporate Banner
Satellite Banner
Scientific Community
Become a Member | Sign in
Home>News>This Article

Tumor-suppressor Protein Gives Up Its Secrets

Published: Friday, July 12, 2013
Last Updated: Friday, July 12, 2013
Bookmark and Share
Discovery promises new targets for cancer drug design.

Genetic mutations aren’t the only thing that can keep a protein called PTEN from doing its tumor-suppressing job. Johns Hopkins researchers have now discovered that four small chemical tags attached (reversibly) to the protein’s tail can have the same effect, and they say their finding may offer a novel path for drug design to keep PTEN working.

In a report published on July 9 in the journal eLife, the Johns Hopkins scientists describe how a cluster of four phosphate groups, first found 13 years ago to bind to PTEN’s tail, controls its activity.

“Now that we know how these phosphate tags are involved in regulating PTEN’s activity, new options may be available for drugs that interfere with them,” says Philip A. Cole, M.D., Ph.D., the E.K. Marshall and Thomas H. Maren Professor and director of the Department of Pharmacology and Molecular Sciences at the Johns Hopkins University School of Medicine.

In addition to phosphate tags, mutations in genes that code for a protein can cause some protein activities to be permanently on or off. Mutations that deactivate PTEN often lead to cancer because PTEN’s job is to prevent cells from dividing too much, Cole notes. But there are times when a cell needs to divide to replace dead cells, so scientists knew there had to be a naturally occurring mechanism for turning PTEN off, and they hypothesized that the phosphates on its tail were responsible, as they are in other proteins.

To get at the heart of the question, the Johns Hopkins team had to overcome technical obstacles, including a way to engineer a special version of PTEN in which the phosphates were permanently bound to the tail.

“We had to synthesize the tail of PTEN in the lab and then fit that together with the rest of PTEN, which was made by insect cells,” says David Bolduc, a graduate student in Cole’s laboratory and the lead author of the paper. “Once we cleared that hurdle, we were able to learn a lot more about how phosphates regulate PTEN.”

Armed with their engineered protein, the team analyzed its shape, where in cells it was located and its activity — tasks aided by miniature X-ray imagers and biochemical tests that shed light on how PTEN interacted with other entities, like PIP3, a fat-like molecule located just inside the outer envelope of cells.

The team found that when there are no phosphates on PTEN’s tail, it is in its active form and it removes a phosphate tag from PIP3. The loss of the phosphate alters PIP3’s activity and causes a chain reaction of effects on other important regulatory proteins that ultimately suppresses cell division and migration, both deadly aspects of tumor progression.

Cole explains that when a cell needs to divide, another protein, most often CK2, adds phosphates to PTEN’s tail, causing a change in its shape and location. Its tail curls back on the rest of the protein and prevents it from interacting with PIP3 in the outer envelope of the cell, so PTEN ends up inactive, in the fluid-filled middle of the cell. When the phosphates are removed, PTEN relocates to the outer envelope, where it removes a phosphate tag from PIP3 to initiate the chain reaction that suppresses tumor formation.

“The tail of PTEN actually has a competition going on between binding to itself and binding to the outer envelope of the cell where PIP3 is located,” explains Bolduc. “Any drug that can prevent the tail from binding itself might also maintain the tumor-fighting activity of PTEN.”

According to Cole, many cancer patients have an overabundance of CK2, the protein that adds phosphates to PTEN and turns it off. So, increasing the activity of PTEN might be helpful not only to patients with defective PTEN, but also to those with cancer-causing mutations in other proteins.

Further Information
Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 2,800+ scientific posters on ePosters
  • More than 4,000+ scientific videos on LabTube
  • 35 community eNewsletters

Sign In

Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

Bad Luck of Random Mutations Plays Predominant Role in Cancer, Study Shows
Statistical modeling links cancer risk with number of stem cell divisions.
Tuesday, January 06, 2015
Cancer Leaves a Common Fingerprint on DNA
Chemical alterations to genes appear key to tumor development.
Tuesday, August 26, 2014
Signals Found That Recruit Host Animals’ Cells, Enabling Breast Cancer Metastasis
Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained.
Thursday, May 22, 2014
Common Genetic Pathway Could Be Conduit to Pediatric Tumor Treatment
Investigators have found a known genetic pathway to be active in many difficult-to-treat pediatric brain tumors called low-grade gliomas.
Monday, November 11, 2013
A Simple Blood Test May Catch Early Pancreatic Cancer
Currently, disease usually found too late to save lives.
Wednesday, October 30, 2013
Cancer-Linked Fam190a Gene Found to Regulate Cell Division
Scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis.
Thursday, July 04, 2013
Scientists Pair Blood Test and Gene Sequencing to Detect Cancer
Scientists have combined the ability to detect cancer DNA in the blood with genome sequencing technology in a test that could be used to screen for cancers, monitor cancer patients for recurrence and find residual cancer left after surgery.
Friday, November 30, 2012
Researchers Link New Molecular Culprit to Breast Cancer Progression
Johns Hopkins researchers have uncovered a protein “partner” commonly used by breast cancer cells to unlock genes needed for spreading the disease around the body.
Wednesday, November 28, 2012
Lost Molecule is Lethal for Liver Cancer Cells in Mice
MicroRNA kills tumor cells and lets healthy cells live. Scientists at Johns Hopkins have discovered a potential strategy for cancer therapy by focusing on what’s missing in tumors.
Friday, June 12, 2009
Scientific News
New Class of RNA Tumor Suppressors Identified
Two short, “housekeeping” RNA molecules block cancer growth by binding to an important cancer-associated protein called KRAS. More than a quarter of all human cancers are missing these RNAs.
Mathematical Model Forecasts the Path of Breast Cancer
Chances of survival depend on which organs breast cancer tumors colonize first.
Exploring the Causes of Cancer
Queen's research to understand the regulation of a cell surface protein involved in cancer.
Nanocarriers May Carry New Hope for Brain Cancer Therapy
Berkeley lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier.
RNA-Based Drugs Give More Control Over Gene Editing
CRISPR/Cas9 gene editing technique can be transiently activated and inactivated using RNA-based drugs, giving researchers more precise control in correcting and inactivating genes.
University of Glasgow Researchers Make An Impact in 60 Seconds
Early-career researchers were invited to submit an engaging, dynamic and compelling 60 second video illuminating an aspect of their research.
Metabolic Profiles Distinguish Early Stage Ovarian Cancer with Unprecedented Accuracy
Studying blood serum compounds of different molecular weights has led scientists to a set of biomarkers that may enable development of a highly accurate screening test for early-stage ovarian cancer.
Dead Bacteria to Kill Colorectal Cancer
Scientists from Nanyang Technological University (NTU Singapore) have successfully used dead bacteria to kill colorectal cancer cells.
CRISPR-Cas9 Gene Editing: Check Three Times, Cut Once
Two new studies from UC Berkeley should give scientists who use CRISPR-Cas9 for genome engineering greater confidence that they won’t inadvertently edit the wrong DNA.
Genetically Engineering Algae to Kill Cancer Cells
New interdisciplinary research has revealed the frontline role tiny algae could play in the battle against cancer, through the innovative use of nanotechnology.

Skyscraper Banner
Go to LabTube
Go to eposters
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
2,800+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,000+ scientific videos