Corporate Banner
Satellite Banner
RNAi
Scientific Community
 
Become a Member | Sign in
Home>News>This Article
  News
Return

Injectable ‘Smart Sponge’ Holds Promise for Controlled Drug Delivery

Published: Monday, July 22, 2013
Last Updated: Monday, July 22, 2013
Bookmark and Share
Researchers have developed a drug delivery technique for diabetes treatment in which a sponge-like material surrounds an insulin core.

The sponge expands and contracts in response to blood sugar levels to release insulin as needed. The technique could also be used for targeted drug delivery to cancer cells.

“We wanted to mimic the function of health beta-cells, which produce insulin and control its release in a healthy body,” says Dr. Zhen Gu, lead author of a paper describing the work and an assistant professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina at Chapel Hill. “But what we’ve found also holds promise for smart drug delivery targeting cancer or other diseases.” The research team includes Daniel Anderson, the senior author and an associate professor of chemical engineering and member of the Koch Institute for Integrative Cancer Research at MIT, and researchers from the Department of Anesthesiology at Boston Children’s Hospital.

The researchers created a spherical, sponge-like matrix out of chitosan, a material found in shrimp and crab shells. Scattered throughout this matrix are smaller nanocapsules made of a porous polymer that contain glucose oxidase or catalase enzymes. The sponge-like matrix surrounds a reservoir that contains insulin. The entire matrix sphere is approximately 250 micrometers in diameter and can be injected into a patient.

When a diabetic patient’s blood sugar rises, the glucose triggers a reaction that causes the nanocapsules’ enzymes to release hydrogen ions. Those ions bind to the molecular strands of the chitosan sponge, giving them a positive charge. The positively charged chitosan strands then push away from each other, creating larger gaps in the sponge’s pores that allow the insulin to escape into the bloodstream. In type 1 and advanced type 2 diabetes, the body needs injections of insulin, a hormone that transports glucose – or blood sugar – from the bloodstream into the body’s cells.

As the insulin is released, the body’s glucose levels begin to drop. This causes the chitosan to lose its positive charge, and the strands begin to come back together. This shrinks the size of the pores in the sponge, trapping the remaining insulin.

While this work created hydrogen ions by using enzymes that are responsive to glucose, the technique could be simplified to target cancers by eliminating the enzymes altogether. Tumors are acidic environments that have high concentrations of hydrogen ions. If the sponge reservoir were filled with anticancer drugs, the drugs would be released when the chitosan came into contact with the hydrogen ions in tumor tissues or cancer cells.

“We can also adjust the size of the overall ‘sponge’ matrix as needed, as small as 100 nanometers,” Gu says. “And the chitosan itself can be absorbed by the body, so there are no long term health effects.”

In tests using diabetic laboratory mice, the researchers found the sponge matrix was effective at reducing blood sugar for up to 48 hours. However, the researchers published a separate “smart system” for insulin delivery in May that maintained normal blood sugar levels for 10 days.

“But we learned a lot from the promising ‘sponge’ research and will further optimize it. Meanwhile, we are already exploring applications to combat cancer,” Gu says.

The paper, “Glucose-Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery,” is published online in ACS Nano. The research was supported by a grant from the Leona M. and Harry B. Helmsley Charitable Trust Foundation, and a gift from the Tayebati Family Foundation.


Further Information

Join For Free

Access to this exclusive content is for Technology Networks Premium members only.

Join Technology Networks Premium for free access to:

  • Exclusive articles
  • Presentations from international conferences
  • Over 3,100+ scientific posters on ePosters
  • More than 4,500+ scientific videos on LabTube
  • 35 community eNewsletters


Sign In



Forgotten your details? Click Here
If you are not a member you can join here

*Please note: By logging into TechnologyNetworks.com you agree to accept the use of cookies. To find out more about the cookies we use and how to delete them, see our privacy policy.

Related Content

‘Nanodaisies’ Deliver Drug Cocktail to Cancer Cells
The daisy-shaped, nanoscale structures are made predominantly of anti-cancer drugs and are capable of introducing a “cocktail” of multiple drugs into cancer cells.
Thursday, May 29, 2014
New Method Sneaks Drugs into Cancer Cells Before Triggering Release
Biomedical engineering researchers have developed an anti-cancer drug delivery method that essentially smuggles the drug into a cancer cell before triggering its release.
Tuesday, May 13, 2014
Scientific News
Early Genetic Changes in Premalignant Colorectal Tissue Identified
Findings point to drivers of early cancer development, targets for cancer prevention therapies.
Scientists Find Evidence That Cancer Can Arise Changes
Researchers at Rockefeller University have found a mutation that affects the proteins that package DNA without changing the DNA itself can cause a rare form of cancer.
Breakthrough Approach to Breast Cancer Treatment
Scripps scientists have designed a drug candidate that decreases growth of breast cancer cells.
A Guide to CRISPR Gene Activation
A comparison of synthetic gene-activating Cas9 proteins can help guide research and development of therapeutic approaches.
Testing Non-Breast/Ovarian Cancer Genes
Researchers have found that expanding gene panel beyond breast/ovarian cancer genes in these patients does not add any clinical benefit. Instead, testing has produced more questions than answers.
Myeloid-Derived Suppressor Cells Play Role in Tumor Growth
Researchers at Baylor College of Medicine have reported a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.
Cancer Cells Coordinate to Form Roving Clusters
Rice University scientists identify ‘smoking gun’ in metastasis of hybrid cells.
Poliovirus Therapy Wins 'Breakthrough' Status
FDA decision will fast-track research on breakthrough Duke brain cancer therapy.
Novel Way to Prevent Deadly Bacterial Infections
Monash scientists may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant “superbugs”
New Treatment for Pancreatic Cancer
Researchers at Purdue University have shown how controlling cholesterol metabolism in pancreatic cancer cells reduces metastasis.
SELECTBIO

SELECTBIO Market Reports
Go to LabTube
Go to eposters
 
Access to the latest scientific news
Exclusive articles
Upload and share your posters on ePosters
Latest presentations and webinars
View a library of 1,800+ scientific and medical posters
3,100+ scientific and medical posters
A library of 2,500+ scientific videos on LabTube
4,500+ scientific videos
Close
Premium CrownJOIN TECHNOLOGY NETWORKS PREMIUM FOR FREE!